• 제목/요약/키워드: radon gas

Search Result 92, Processing Time 0.023 seconds

Eco-Friendly and Thermal Conductivity Properties of Magnesium oxide Matrix Utilizing Bentonite (벤토나이트를 활용한 산화마그네슘 경화체의 친환경성 및 열저항 특성)

  • Gwon, Oh-Han;Lim, Hyun-Ung;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.64-65
    • /
    • 2016
  • This study that prevent cancer using absorbent to inflow Radon gas in the room existing soil and rock is making board to absorb the Radon gas as a fundamental study. So, we use bentonite as a absorbent. So, we use bentonite as a absorbent. Bentonite is a 'clay mineral' composed to montmorillonite of main component that volcanic ash denatured to a clay mineral. Bentonite has fine microparticle of nano level, abundant mineral 66 of kinds, adsorbability, swelling, a positive ion(heavy metal adsorption reaction) as a bentonite's property. Using magnesia cement for oxide of magnesiuma and magnesium chloride as a main binder, we measure Radon gas absorbent efficiency and thermal conductivity.

  • PDF

Adsorption properties of magnesium oxide matrix using anthracite and vermiculite (안트라사이트와 버미큘라이트를 혼입한 산화마그네슘 경화체의 흡착특성)

  • Kim, Dae-Yeon;Pyeon, Su-Jeong;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.224-225
    • /
    • 2018
  • Modern people are more interested in the indoor environment as they spend more time indoors than in the past. Among the air pollutants in the indoor air, ladon gas is a colorless, tasteless, odorless, inert gas produced by nuclear decomposition of naturally occurring uranium in rocks and soils. It has been proven that ladon gas is introduced into the room through cracks on the floor of the building or basement wall, and it causes various diseases such as lung cancer when exposed to radon during human breathing. The US Environmental Protection Agency (EPA) specifies 4pCi / L as a necessary measure for radon, and the Korea Environmental Protection Agency has implemented comprehensive indoor radon management measures since 2007. Therefore, in this study, we intend to adsorb and reduce radon in indoor air pollutants.

  • PDF

Properties of Radon Gas Absorption of Matrix According to Types of Absorbent (흡착재의 종류에 따른 경화체의 라돈가스흡착 특성)

  • Gwon, Oh-Han;Lim, Hyun-Ung;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • WHO reported that millions of people die every year because of diseases induced from environmental pollution. In 2012, approximately 7 million people were killed due to air pollution. Major cause of such pollution includes toxin, chemical waste, radiation and air pollution. Therefore, the significance and interest to indoor air quality has been continuously increased. Especially, the interest in radon, the ARC group 1 carcinogen, is rapidly increasing, and banning the use of construction materials that release radon, repairing aged buildings, and developing ventilators. To reduce the level of radon gas was inflowed to indoors and outdoors, this study is to research and develop a radon gas absorption board using absorbents. The absorbents utilized to absorb the radon gas were porous diatomite, natural zeolite, 4A zeolite and 13X zeolite and employed bentonite and illite, montmorillonites with the property of exchanging anions. As the main binder, magnesium oxide was used, with a content of 25% magnesium chloride.

Air Content and Fluidity Properties of Cement Matrix according to Anthracite Particle-size (안트라사이트 입도에 따른 시멘트 경화체의 공기량 및 유동성 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.92-93
    • /
    • 2017
  • Recently, there has been an increasing interest in natural radioactive gas radon(Rn-222), the problem of indoor air quality pollution to worldwide. It has been scientifically proven to be hazardous to various diseases such as lung cancer and skin cancer if the human body is exposed to long-term accumulation of atomic nuclei due to the destruction of radon and alpha lines. Based on the indoor air quality control policy, this study is a basic experiment in the manufacture of a selective elimination function to containing radon adsorption and reduction of radon concentration, which is used to absorb radioactive isotopes such as phosphorus and radon in indoor environment.

  • PDF

Measurement of Rn-222 Gas Concentration of Newly Constructed Apartment House in Gwangju Gwangsan-Gu (광주광역시 광산구 소재 신축 아파트 라돈가스 농도 계측)

  • Jang, Hee jun;Lee, Sang bock
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.257-261
    • /
    • 2015
  • Radon is produced after the Uranium-238 and thorium-232 undergone radioactive decay process is a colorless, odorless inert gas is stored in a basement or an enclosed space. Building materials are made by a rock or soil materials. Form of radon gas is introduced into the lungs through the respiratory tract and deposited in the lungs or bronchial Daughter nuclides radon causes lung cancer. In this study, To subject the Constructed Apartment in Gwangju Gwangsan-Gu, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at Newly Constructed Apartment is low than United states in the radon concentration in air public 4 pCi called radon gas baseline maximum allowable concentrations. The exposure caused by radon concentration of new construction apartment when on the measurement results is expected to be insignificant. However, when radon gas like this is that it accumulates in the body and lungs get damaged due to exposure, such as lung cancer often open the windows to reduce the radon concentration measurements, such as in radiation protection aspects to the ventilation to reduce exposure it is considered necessary.

The Design and Implementation of IoT-Based Radon Measurement Control System (IoT 기반 라돈 측정 제어시스템 설계 및 구현)

  • Ahn, Heuihak;Gu, Jayeong;Lee, Sangyoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper is a IoT-based radon meter control system and a radon meter control method using it. The IoT-based radon meter control system is control system for controlling a radon meter by network-connecting radon meter and a user terminal. The radon measuring device may be provided with a radon sensor to measure a radon value of a preset management target area, it collect and store numerical data. The radon meter control system monitors the condition of the radon meter, it includes control center configured to deliver radon meter management information generated to a user terminal. Also radon measurements to determine the exact amount of radon gas. Therefore, the situation-specific actions based on radon numbers can be promptly implemented to ensure adequate protection for those who are vulnerable to radon and those who live in the area. Condition monitoring allows the radon meter to respond quickly to failure or failure of the radon meter. In addition, it is possible to secure a baseline of radon's influence and to obtain research data to cope with radon by establishing big data with radon measurements.

Radon Reduction Performance of Adsorbent for Making Radon-Reducing Functional Board (라돈 저감형 기능성 보드제작을 위한 흡착재의 라돈 저감 성능)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Kim, Yeon-Ho;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • In this study, an experiment was conducted to evaluate the properties of cement matrix using diatomite and silica gel as adsorbents of radon. The adsorption properties of diatomite of a natural adsorbent and silica gel of an artificial sorbent were examined to confirm the reduction of radon gas concentration of the removal of radon gas in the indoor environment of the human body. We conducted a performance evaluation for the study. The fluidity, air content, density, absorption, flexural failure load, thermal conductivity and radon gas concentration of the specimen using diatomite and silica gel were measured. the fluidity and the air content of the adsorbed matrix with diatomite were decreased as the diatomite replacement ratio increased. Which seems to affect the subsequent matrix by the absorption of the compounding water of diatomite. As the replacement rate of silica gel increased, the fluidity decreased and the air content increased up to constant replacement rate. It is judged that the surface of the silica gel has a critical point at which it can react with moisture.

Adsorption properties of non-cement boards using adsorbent (흡착재를 활용한 흡착형 무시멘트 보드의 흡착 특성)

  • Pyeon, Su-Jeong;Lim, Hyun-ung;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.226-227
    • /
    • 2018
  • Recently, as the interest of the government and the public on energy saving has increased, the airtightness of buildings has been improved to improve the insulation performance of buildings. However, indoor air pollution due to increase of pollution source in indoor space and lack of ventilation is increasing and interest in indoor air quality is increasing. In 2003, the Ministry of Environment enacted and promulgated the Act on Indoor Air Quality Control in Multi-use Facilities. Radon is a naturally occurring radioactive inert gas with colorless, tasteless and odorless nature. The concentration is high in a room where radon can not escape. Although lononggas is naturally occurring, it is not interested in living environment, but it is easily inhaled through human body through respiration and causes lung cancer in long-term exposure. Therefore, this study intends to carry out an experiment for the reduction of radon gas, which is the first carcinogen in indoor air pollution sources.

  • PDF

Radon distribution in geochemical environment and controlling factors in Radon concentration(Case study) (지구화학환경에서의 라돈농도분포와 라돈농도의 지배요인(사례연구))

  • 전효택
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.189-214
    • /
    • 2000
  • Three study areas of Kwanak campus(Seoul National University), Gapyung and Boeun were selected and classified according to bedrock types in order to investigate soil-gas radon concentrations. Several soil-gas samples showed relatively high radon concentrations in the residual soils which derived from granite bedrock. It also showed that water content of soil and the degree of radioactivity disequilibrium was a secondary factor governing radon emanation and distribution of radon radioactivity. The results of radon concentrations and working levels for forty rooms in Kwanak campus, Seoul National University, showed that indoor basement rooms under poor ventilation condition can be classified as high radon risk zone having more than EPA guideline(4 pCi/L). Some results of section analysis which was surveyed in the fault zone of Kyungju and Gapyung area confirmed the existence of fault-associated radon anomalies with a meaning of radon risk zone.

  • PDF

Current Status of Radon Management in the 5678 Seoul Metropolitan Rapid Transit Subway (5678 서울도시철도 지하역사의 라돈 관리 현황)

  • Kim, Jun-Hyun;Yoon, Hun-Sik;Seo, Kang-Jin;Woo, Hee-Yeong;Kim, Man-Hwa;Park, Jong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1306-1312
    • /
    • 2011
  • Underground Subway station's air pollutants are introduced from the indoor or outdoor. And Radon is a major pollutant in the subway station. Radioactive substances Radon is occuring naturally in granite tunnel wall and underground water. Especially inert gas Radon that causes lung cancer in human is anywhere but 5678 S.M.R.T. tunnels deep and pass through the granite plaque have a lot of Radon. The Radon concentration is determined by the following reasons : radon content of soil and concrete, underground water, ventilation, pressure difference, building structure, temperature, etc. So Radon concentration is hard to predict. And we can't only ventilate owing to era of high oil prices. This study focuses on our efforts for the reduction of Radon concentration. And the purpose is to provide basically datas of specially managed 15 subway station's Radon concentration.

  • PDF