• Title/Summary/Keyword: radius problem

Search Result 265, Processing Time 0.032 seconds

A Finite Element Analysis and Shape Optimal Design with Specified Stiffness for U-typed Bellows (U형 벨로우즈의 유한요소해석과 특정 강성을 위한 형상최적설계)

  • Koh, K.G.;Suh, Y.J.;Park, G.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.96-111
    • /
    • 1995
  • A bellows is a component installed in the automobile exhaust system to reduce the impact from an engine. It's stiffness has a great influence on the natural frequency of the system. Therefore, it must be designed to keep the specified stiffness that requires in the system. This study present the finite element analysis of U-typed bellows using a curved conical frustum element and the shape optimal design with specified stiffness. The finite element analysis is verified by comparing with the experimental results. In the shape optimal design, the weight is considered as the cost function. The specified stiffness from the system design is transformed to equality constraints. The formulation has inequality constraints imposed on the fatigue limit, the natural frequencies, the buckling load and the manufacturing conditions. A procedure for shape optimization adopts a thickness, a corrugation radius, and a length of annular plate as optimal design variables. The external loading conditions include the axial and lateral loads with a boundary condition fixed at an end of the bellows. The recursive quadratic programming algorithm is selected to solve the problem. The result are compared with the existing bellows, and the characteristics of the bellows is investigated through the optimal design process. The optimized shape of the bellows are expected to give quite a good guideline to the practical design.

  • PDF

Robust Design of Coordinated Set Planning with the Non-Ideal Channel

  • Dai, Jianxin;Liu, Shuai;Chen, Ming;Zhou, Jun;Qi, Jie;Liang, Jingwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1654-1675
    • /
    • 2014
  • In practical wireless systems, the erroneous channel state information (CSI) sometimes deteriorates the performance drastically. This paper focuses on robust design of coordinated set planning of coordinated multi-point (CoMP) transmission, with respect to the feedback delay and link error. The non-ideal channel models involving various uncertainty conditions are given. After defining a penalty factor, the robust net ergodic capacity optimization problem is derived, whose variables to be optimized are the number of coordinated base stations (BSs) and the divided area's radius. By the maximum minimum criterion, upper and lower bounds of the robust capacity are investigated. A practical scheme is proposed to determine the optimal number of cooperative BSs. The simulation results indicate that the robust design based on maxmin principle is better than other precoding schemes. The gap between two bounds gets smaller as transmission power increases. Besides, as the large scale fading is higher or the channel is less reliable, the number of the cooperated BSs shall be greater.

Two scale modeling of behaviors of granular structure: size effects and displacement fluctuations of discrete particle assembly

  • Chu, Xihua;Yu, Cun;Xiu, Chenxi;Xu, Yuanjie
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.315-334
    • /
    • 2015
  • This study's primary aim is to check the existence of a representative volume element for granular materials and determine the link between the properties (responses) of macro structures and the size of the discrete particle assembly used to represent a constitutive relation in a two-scale model. In our two-scale method the boundary value problem on the macro level was solved using finite element method, based on the Cosserat continuum; the macro stresses and modulus were obtained using a solution of discrete particle assemblies at certain element integration points. Meanwhile, discrete particle assemblies were solved using discrete element method under boundary conditions provided by the macro deformation. Our investigations focused largely on the size effects of the discrete particle assembly and the radius of the particle on macro properties, such as deformation stiffness, bearing capacity and the residual strength of the granular structure. According to the numerical results, we suggest fitting formulas linking the values of different macro properties (responses) and size of discrete particle assemblies. In addition, this study also concerns the configuration and displacement fluctuation of discrete particle assemblies on the micro level, accompanied with the evolution of bearing capacity and deformation on the macro level.

The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material (상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구)

  • Kim, J.K.;Yim, J.S.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

USB security solution using 2 fator authentication (2차 인증방식을 이용한 USB보안 솔루션 (USS Solution))

  • Ko, Sang-Hyun;Han, Seok-Jin;Choi, Yoon-SU;Bae, Jong-Su;Lee, Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.267-270
    • /
    • 2017
  • As IT technology developed, storage media also developed. Among them, USB, which is a removable storage medium, is used not only to have several per person but also to work in various companies. Users store valuable and confidential data within USB. As time went on, the need for security increased. In order to solve this security problem, USB has been introduced to allow users to access internal files by inputting ID and password by embedding a security program in USB. However, the method of storing ID and Password inside is low confidentiality and high risk of information leakage. To solve these problems, we propose a 2 factor authentication system using Radius server in addition to login authentication. The proposed system not only improves the authenticity of the device, but also reduces the risk of infringement of personal information when lost. It also encrypts internal files to increase the confidentiality of internal information.

EFFECTS OF THE DIFFUSE IONIZING RADIATION ON THE STRUCTURE OF HII REGIONS

  • Hong, S.S.;Sung, H.I.
    • Journal of The Korean Astronomical Society
    • /
    • v.22 no.2
    • /
    • pp.127-140
    • /
    • 1989
  • Problem of the diffuse radiation (DFR) transfer is solved exactly for pure hydrogen nebulae of uniform density, and accuracies of the on-the-spot (OTS) approximation are critically examined. For different values of density and spectral types of the central star, we have calculated the degree of ionization and the kinetic temperature of electrons as functions of distance from the central star, and compared them with the corresponding results of the OTS approximation. At most locations inside an HII region. the DFR ionizes considerable amount of hydrogen; therefore, the OTS approximation under-estimates the size of ionized regions. The exact treatment of the DFR transfer results in an about 10 to 20 percent increase in the classical $Str{\ddot{o}}mgren$ radius. The OTS approximation overestimates the local heating rate by raising the density of neutral hydogens. Consequently, it predicts higher values for the local electron temperature. The OTS approximation also exaggerates the dependence of electron temperature on density. When the hydrogen density is changed from $10/cm^3$ to $10^3/cm^3$ with an 06.5V star, the OTS approximation shows an about 3,000 K difference in the electron temperature, while the exact treatment of the DFR-transfer reduces the difference to about 1,000 K. The OTS approximation fails to demonstrate the brightening of the electron temperature close to the ionization boundary.

  • PDF

A Study on Design Sensitivity of Elastomeric O-ring Squeezed and Highly Pressurized Under Laterally One-sided Constrained Condition (단 측벽 구속하에서 압축 및 내압을 받는 고무 오링의 설계 민감도 연구)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.27-34
    • /
    • 2007
  • Static or dynamic elastomeric O-ring seals are installed between joining parts, and play key roles of high pressure-tightening. Sealing performance and structural safety of the O-ring are dependent on groove design, plain diameter, squeeze and applications such as pressure and temperature. In this study, to solve O-ring problem squeezed and highly pressurized under laterally one-sided constrained condition, hyperelastic FE analyses are performed, and FE results are compared with measured ones by computer-aided tomography, deformed shape and extrusion depth of the O-ring. Through the comparisons, FE analysis technique was verified. In order to evaluate design sensitivity, Taguchi method was used to select FE analysis cases. Adjustment parameters are clearance gap, groove comer radius, plain diameter and squeeze. By means of verified FE analysis technique, it has been analysed how the parameters have effects on contact stress fields, internal stress fields, and extrusion depths. Sealing performance has been evaluated based on contact stress fields and contact widths, and structural safety on internal stress and strain, extrusion lengths.

A Study on Parking Guideline Generation Algorithm (주차 가이드라인 생성 알고리즘에 대한 연구)

  • Heo, Jun-Ho;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3060-3070
    • /
    • 2015
  • Recently, novice driver or weak drivers was difficult to understand the movement characteristics of the car and are immature sense of width and length of the car according to various each driver's sex and age, model. To complement this problem, the use of rear sensor and the camera is increased. And the parking assistance system that improves the convenience of parking the driver is being developed. Accordingly, parking guide system is needed to reflect the difference in the steering angle and correct the error distance. In this study, it is proposed that the turning radius during backward by complementing the existing Ackerman Jentaud type. And it develops more accurate parking guideline to be able to generat algorithm by applying the formula to propose a steering wheel angle sensor value derived through the handle.

Electrical Breakdown Characteristics of Composite Insulation Composed of Epoxy Resins with N2, Dry-air in Non-uniform Field (불평등 전계 시 에폭시와 N2, dry-air 혼합절연체의 절연파괴특성)

  • Jung, Hae-Eun;Park, Seong-Hee;Kang, Seong-Hwa;Lim, Kee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.462-463
    • /
    • 2007
  • SF6 widely used as insulating gas is rising as the environment problem. For decreasing this greenhouse gas, electrical breakdown characteristics of composite insulation composed of epoxy resins with N2, air are studied in non-uniform field. The gap of needle to plane was 3mm, 5mm. The pressure of air, nitrogen was varied within the range of 0.1~0.6MPa. The thickness of a needle is 1mm and the curvature radius of the end of needle is 100um. The diameter of a plane made of the stainless steel is 50mm. As a result of the experiment, the breakdown voltage is increased about 3 times when epoxy resins is composited. The thickness of epoxy resins filled opposite to electrode concentrated electric field weakly influences on breakdown voltage.

  • PDF

Electrical Breakdown Characteristics of Epoxy and dry-air Composite Insulation (에폭시와 dry-air 혼합절연물의 절연파괴특성)

  • Jung, Hae-Eun;Oh, Jin-Heon;Lim, Jong-Nam;Kang, Seong-Hwa;Lim, Kee-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1389-1390
    • /
    • 2007
  • SF6 gas used widely as insulating component is rising as the environment problem. Electrical breakdown characteristics of epoxy and dry-air composite insulation was investigated on thickness of epoxy and pressure of dry-air under non-uniform field. The gap of needle to plane was from 2mm to 5mm. The pressure of dry-air was varied within the range of $0.1{\sim}0.6$ MPa. The thickness of a needle was 1mm and the curvature radius of a needle end was 100um. The diameter of a plane made of the stainless steel was 50mm. As a result of the experiment, breakdown voltage was increased about 3 times when epoxy was used. The impact that the thickness of epoxy influences on breakdown voltage was poor. It needs suitable thickness computation because the insulating gap of the gas is short as epoxy thickness increases.

  • PDF