• Title/Summary/Keyword: radionuclides

Search Result 588, Processing Time 0.022 seconds

Selection of Key Radionuclides for P&T Based on Radiological Impact Assessment for the Deep Geological Disposal of Spent PWR/CANDU/DUPIC Fuels

  • Lee, Dong-Won;Chung, Chang-Hyun;Kim, Chang-Lak;Park, Joo-Wan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.231-240
    • /
    • 2001
  • When it is assumed that PWR, CANDU and DUPIC spent fuels are disposed of in deep geological repository, consequent annual individual doses are calculated, and it is shown that doses meet the regulatory limit. From these results, the hazardous radionuclides applicable to partitioning and transmutation are selected. These selected radionuclides such as Tc-99, Ⅰ-129, Cs-135 and Np-237 are then reviewed in terms of partitioning and transmutation. Separation of I-129, Np-237 and Tc-99 from spent fuels is considered desirable, and transmutation of these radionuclides results in remarkable hazard reduction. However, it is concluded that separation and transmutation of Cs-135 may be ineffective although it is classified into a hazardous radionuclide.

  • PDF

The Transport of Radionuclides Released From Nuclear Facilities and Nuclear Wastes in the Marine Environment at Oceanic Scales

  • Perianez, Raul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.321-338
    • /
    • 2022
  • The transport of radionuclides at oceanic scales can be assessed using a Lagrangian model. In this review an application of such a model to the Atlantic, Indian and Pacific oceans is described. The transport model, which is fed with water currents provided by global ocean circulation models, includes advection by three-dimensional currents, turbulent mixing, radioactive decay and adsorption/release of radionuclides between water and bed sediments. Adsorption/release processes are described by means of a dynamic model based upon kinetic transfer coefficients. A stochastic method is used to solve turbulent mixing, decay and water/sediment interactions. The main results of these oceanic radionuclide transport studies are summarized in this paper. Particularly, the potential leakage of 137Cs from dumped nuclear wastes in the north Atlantic region was studied. Furthermore, hypothetical accidents, similar in magnitude to the Fukushima accident, were simulated for nuclear power plants located around the Indian Ocean coastlines. Finally, the transport of radionuclides resulting from the release of stored water, which was used to cool reactors after the Fukushima accident, was analyzed in the Pacific Ocean.

International Trends for Radionuclides Management in Drinking water (선진 외국에서의 먹는물 중 방사성물질 관리동향)

  • Park, Sun-Ku;Son, Ji-Hwan
    • Journal of Environmental Policy
    • /
    • v.5 no.2
    • /
    • pp.49-67
    • /
    • 2006
  • The radionuclides in drinking water have been regulated in many countries. In USA, the regulation has been revised for over 30 years since radionuclides have been regulated under Safe Drinking Water Act(SDWA) from 1974. Today, USEPA is finalizing maximum contaminant level goal(MCLG) of zero for radionuclides, maximum contaminant level(MCL) and alternative maximum contaminant level(AMCL) of 300pCi/L and 4,000pCi/L for radon respectively, MCLs of $30{\mu}g/L$ for uranium, and MCLs of 5pCi/L for combined radium 226 and 228. In Canada, Maximum Acceptable Concentration(MAC) value for uranium is $20{\mu}g/L$. WHO revised the guideline value of uranium and radon to $15{\mu}g/L$ and 100Bq/L in september 2004, respectively. On this survey, it has been found that international regulations for radionuclides in drinking water have been established and improved steadily on the knowledge basis from the past decades' studies.

  • PDF

Assessment of Environmental Radioactivity Surveillance Results around Korean Nuclear Power Utilization Facilities in 2017

  • Kim, Cheol-Su;Lee, Sang-Kuk;Lee, Dong-Myung;Choi, Seok-Won
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.118-126
    • /
    • 2019
  • Background: Government conducts environmental radioactivity surveillance for verification purpose around nuclear facilities based on the Nuclear Safety Law and issues a surveillance report every year. This study aims to evaluate the short and the long-term fluctuation of radionuclides detected above MDC and their origins using concentration ratios between these radionuclides. Materials and Methods: Sample media for verification surveillance are air, rainwater, groundwater, soil, and milk for terrestrial samples, and seawater, marine sediment, fish, and seaweed for marine samples. Gamma-emitting radionuclides including $^{137}Cs$, $^{90}Sr$, Pu, $^3H$, and $^{14}C$ are evaluated in these samples. Results and Discussion: According to the result of the environmental radioactivity verification surveillance in the vicinity of nuclear power facilities in 2017, the anthropogenic radionuclides were not detected in most of the environmental samples except for the detection of a trace level of $^{137}Cs$, $^{90}Sr$, Pu, and $^{131}I$ in some samples. Radioactivity concentration ratios between the anthropogenic radionuclides ($^{137}Cs/^{90}Sr$, $^{137}Cs/^{239+240}Pu$, $^{90}Sr/^{239+240}Pu$) were similar to those reported in the environmental samples, which were affected by the global fallout of the past nuclear weapon test, and Pu atomic ratios ($^{240}Pu/^{239}Pu$) in the terrestrial sample and marine sample showed significant differences due to the different input pathway and the Pu source. Radioactive iodine ($^{131}I$) was detected at the range of < $5.6-190mBq{\cdot}kg-fresh^{-1}$ in the gulfweed and sea trumpet collected from the area of Kori and Wolsong intake and discharge. A high level of $^3H$ was observed in the air (Sangbong: $0.688{\pm}0.841Bq{\cdot}m^{-3}$) and the precipitation (Meteorology Post: $199{\pm}126Bq{\cdot}L^{-1}$) samples of the Wolsong nuclear power plant (NPP). $^3H$ concentration in the precipitation and pine needle samples showed typical variation pattern with the distance and the wind direction from the stack due to the gaseous release of $^3H$ in Wolsong NPP. Conclusion: Except for the detection of a trace level of $^{137}Cs$, $^{90}Sr$, Pu, and $^{131}I$ in some samples, anthropogenic radionuclides were below MDC in most of the environmental samples. Overall, no unusual radionuclides and abnormal concentration were detected in the 2017's surveillance result for verification. This research will be available in the assessment of environment around nuclear facilities in the event of radioactive material release.

An analysis of the concentration of radioactivity of natural radionuclides (238U, 232Th, 40K) and gamma-ray emitting artificial radionuclides(137Cs, 60Co) present in the drinking water of the city of Busan, Republic of Korea, and the calculated absorbed dose of the residents

  • Kim, Chang-Soo;Kim, Jung-Hoon
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2012
  • This study was designed to detect and measure the concentration of radioactivity of natural radionuclides ($^{238}U$, $^{232}Th$, $^{40}K$) and artificial radionuclides ($^{137}Cs$, $^{60}Co$) present in the drinking water of the city of Busan and surrounding areas in South Korea, and also to measure the absorbed dose of radiation caused by these elements in the residents so as to help better manage the risk that these radionuclides pose in the future. For the purposes of the study, a total of 42 samples of water were collected from three key water sources (19 samples of groundwater, 4 samples of tap water, and 19 samples of surface water) and their contents were analyzed for radioactivity concentration. The results revealed that two natural radionuclides, $^{238}U$ and $^{232}Th$, exist in the groundwater with an average concentration of radioactivity of 3.34 Bq/L and $8.28{\times}10^{-5}Bq/L$ respectively, while the surface water was found to contain the same two radionuclides with mean concentrations of 0.849 Bq/L and $1.103{\times}10^{-4}Bq/L$ respectively. In addition, of the 19 samples of the groundwater, $^{137}Cs$ was found in eight of them and $^{60}Co$ was detected in ten. Of the four samples of the tap water, $^{137}Cs$ was detected in all samples and $^{60}Co$ was detected in three. Both $^{137}Cs$ and $^{60}Co$ were detected in all 12 samples of surface water. As far as $^{40}K$ is concerned, this element was detected in three of the 19 groundwater samples, but was not detected in any surface or tap water sample. In addition, the absorbed dose of $^{238}U$ from the groundwater was $7.94{\times}10^{-8}Sv/y$, while the absorbed dose of $^{232}Th$ from the surface water was $9.33{\times}10^{-13}Sv/y$. The absorbed dose of $^{137}Cs$ from the tap water was $7.33{\times}10^{-5}Sv/y$, while the absorbed dose of $^{60}Co$ from the surface water was the highest at $4.23{\times}10^{-6}Sv/y$.

Travel Times of Radionuclides Released from Hypothetical Multiple Source Positions in the KURT Site (KURT 환경 자료를 이용한 가상의 다중 발생원에서의 누출 핵종의 이동 시간 평가)

  • Ko, Nak-Youl;Jeong, Jongtae;Kim, Kyung Su;Hwang, Youngtaek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.281-291
    • /
    • 2013
  • A hypothetical repository was assumed to be located at the KURT (KAERI Underground Research Tunnel) site, and the travel times of radionuclides released from three source positions were calculated. The groundwater flow around the KURT site was simulated and the groundwater pathways from the hypothetical source positions to the shallow groundwater were identified. Of the pathways, three pathways were selected because they had highly water-conductive features. The transport travel times of the radionuclides were calculated by a TDRW (Time-Domain Random Walk) method. Diffusion and sorption mechanisms in a host rock matrix as well as advection-dispersion mechanisms under the KURT field condition were considered. To reflect the radioactive decay, four decay chains with the radionuclides included in the high-level radioactive wastes were selected. From the simulation results, the half-life and distribution coefficient in the rock matrix, as well as multiple pathways, had an influence on the mass flux of the radionuclides. For enhancing the reliability of safety assessment, this reveals that identifying the history of the radionuclides contained in the high-level wastes and investigating the sorption processes between the radionuclides and the rock matrix in the field condition are preferentially necessary.

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

Statistical Approach for Derivation of Quantitative Acceptance Criteria for Radioactive Wastes to Near Surface Disposal Facility

  • Park Jin Beak;Park Joo Wan;Lee Eun Yong;Kim Chang Lak
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.387-398
    • /
    • 2003
  • For reference human intrusion scenarios constructed in previous study, a probabilistic safety assessment to derive the radionuclide concentration limits for the low- and intermediate- level radioactive waste disposal facility is conducted. Statistical approach by the Latin Hypercube Sampling method is introduced and new assumptions about the disposal facility system are examined and discussed. In our previous study of deterministic approach, the post construction scenarios appeared as most limiting scenario to derive the radionuclide concentration limits. Whereas, in this statistical approach, the post drilling and the post construction scenarios are mutually competing for the scenario selection according to which radionuclides are more important in safety assessment context. Introduction of new assumption shows that the post drilling scenario can play an important role as the limiting scenario instead of the post-construction scenario. When we compare the concentration limits between the previous and this study, concentrations of radionuclides such as Nb-94, Cs-137 and alpha-emitting radionuclides show elevated values than the case of the previous study. Remaining radionuclides such as Sr-90, Tc-99 I-129, Ni-59 and Ni-63 show lower values than the case of the previous study.

Key Parameters Analysis of Important Radionuclides in Dose Evaluation Model of Decommissioning Site (해체 부지 선량평가모텔의 주요 핵종에 대한 Key parameter 분석)

  • 임용규;김학수;손중권;박경록;강기두;김경덕;정찬우
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.52-57
    • /
    • 2004
  • In order to analyze key parameters of important radionuclides in dose evaluation model of decommissioning site, a sensitivity analysis was performed. This analysis assumed a resident farmer for an exposure scenario and 0.037Bq/g for the concentration of radionuclides. As a result of sensitivity analysis, the key parameters of radionuclides considered were the area of contaminated zone, external gamma shielding factor and indoor time fraction for Cs-137 and Co-60. The key parameters for C-14 were the environmental parameters and hydrological parameters of unsaturated zone. Also, the key parameter for Sr-90 was the density of contaminated zone.

  • PDF