Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2022.029

The Transport of Radionuclides Released From Nuclear Facilities and Nuclear Wastes in the Marine Environment at Oceanic Scales  

Perianez, Raul (Dpt Fisica Aplicada I, ETSIA, Universidad de Sevilla)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.20, no.3, 2022 , pp. 321-338 More about this Journal
Abstract
The transport of radionuclides at oceanic scales can be assessed using a Lagrangian model. In this review an application of such a model to the Atlantic, Indian and Pacific oceans is described. The transport model, which is fed with water currents provided by global ocean circulation models, includes advection by three-dimensional currents, turbulent mixing, radioactive decay and adsorption/release of radionuclides between water and bed sediments. Adsorption/release processes are described by means of a dynamic model based upon kinetic transfer coefficients. A stochastic method is used to solve turbulent mixing, decay and water/sediment interactions. The main results of these oceanic radionuclide transport studies are summarized in this paper. Particularly, the potential leakage of 137Cs from dumped nuclear wastes in the north Atlantic region was studied. Furthermore, hypothetical accidents, similar in magnitude to the Fukushima accident, were simulated for nuclear power plants located around the Indian Ocean coastlines. Finally, the transport of radionuclides resulting from the release of stored water, which was used to cool reactors after the Fukushima accident, was analyzed in the Pacific Ocean.
Keywords
Dispersion; Ocean circulation; Lagrangian model; Radioactive release;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Proctor, R.A. Flather, and A.J. Elliott, "Modelling Tides and Surface Drift in the Arabian Gulf: Application to the Gulf oil Spill", Cont. Shelf Res., 14(5), 531- 545 (1994).   DOI
2 R. Perianez and A.J. Elliott, "A Particle-Tracking Method for Simulating the Dispersion of non-Conservative Radionuclides in Coastal Waters", J. Environ. Radioact., 58(1), 13-33 (2002).   DOI
3 B. Cushman-Roisin and J.M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspect, Academic Press, Cambridge (2011).
4 A.J. Elliott, B.T. Wilkins, and P. Mansfield, "On the Disposal of Contaminated Milk in Coastal Waters", Mar. Pollut. Bull., 42(10), 927-934 (2001).   DOI
5 I. Brovchenko and V. Maderich, "Modelling Radionuclide Scavenging in the Ocean by Particle Tracking in Multicomponent Medium With First-Order Reaction Kinetics", in: Mathematical Modeling and Simulation of Systems. MODS 2020. Advances in Intelligent Systems and Computing, S. Shkarlet, A. Morozov, and A. Palagin, eds., vol. 1265, 36-46, Springer, Berlin (2021).
6 R. Perianez, R. Bezhenar, I. Brovchenko, K.T. Jung, Y. Kamidara, K.O. Kim, T. Kobayashi, L. Liptak, V. Maderich, B.I. Min, and K.S. Suh, "Fukushima 137Cs Releases Dispersion Modelling Over the Pacific Ocean. Comparisons of Models With Water, Sediment and Biota Data", J. Environ. Radioact., 198, 50-63 (2019).   DOI
7 A. Schiller and P.R. Oke, "Dynamics of Ocean Surface Mixed Layer Variability in the Indian Ocean", J. Geophys. Res. Oceans, 120(6), 4162-4186 (2015).   DOI
8 R. Perianez, Modelling the Dispersion of Radionuclides in the Marine Environment: An Introduction, Springer, Berlin (2005).
9 International Atomic Energy Agency. Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, IAEA Technical Reports Series 422 (2004).
10 R. Perianez, "A Modelling Study on 137Cs and 239,240Pu Behaviour in the Alboran Sea, Western Mediterranean", J. Environ. Radioact., 99(4), 694-715 (2008).   DOI
11 U.P. Nyffeler, Y.H. Li, and P.H. Santschi, "A Kinetic Approach to Describe Trace-Element Distribution Between Particles and Solution in Natural Aquatic Systems", Geochim. Cosmochim. Acta, 48(7), 1513-1522 (1984).   DOI
12 R. Perianez, K.S. Suh, B.I. Min, N. Casacuberta, and P. Masque, "Numerical Modelling of the Releases of 90Sr From Fukushima to the Ocean: An Evaluation of the Source Term", Environ. Sci. Technol., 47(21), 12305-12313 (2013).   DOI
13 E. Deleersnijder, J.M. Campin, and E.J.M. Delhez, "The Concept of age in Marine Modelling: I. Theory and Preliminary Model Results", J. Mar. Syst., 28(3-4), 229-267 (2001).   DOI
14 International Atomic Energy Agency, Modelling of the Radiological Impact of Radioactive Waste Dumping in the Arctic Seas, IAEA-TECDOC-1330, Vienna (2003).
15 S. Charmasson. Cycle du combustible nucleaire et milieu marin. Devenir des effluents Rho- daniens en Mediterranee et des dechets immerges en Atlantique nord-est, Institut de Radioprotection et de Surete Nucleaire Report, CEA-R-5826 (1998).
16 R. Perianez, "Redissolution and Long-term Transport of Radionuclides Released From a Contaminated Sediment: A Numerical Modelling Study", Estuar. Coast. Shelf Sci., 56(1), 5-14 (2003).   DOI
17 R. Perianez, "Viewpoint on the Integration of Geochemical Processes Into Tracer Transport Models for the Marine Environment", Geosciences, 12(4), 152 (2022).   DOI
18 K. Hirose and M. Aoyama, "Present Background Levels of Surface 137Cs and 239,240Pu Concentrations in the Pacific", J. Environ. Radioact., 69(1-2), 53-60 (2003).   DOI
19 D. Tsumune, T. Tsubono, M. Aoyama, M. Uematsu, K. Misumi, Y. Maeda, Y. Yoshida, and H. Hayami, "Oneyear, Regional-scale Simulation of 137Cs Radioactivity in the Ocean Following the Fukushima Dai-ichi Nuclear Power Plant Accident", Biogeosciences, 10(8), 5601-5617 (2013).   DOI
20 H. Kawamura, T. Kobayashi, A. Furuno, T. In, Y. Ishikawa, T. Nakayama, S. Shima, and T. Awaji, "Preliminary Numerical Experiments on Oceanic Dispersion of 131I and 137Cs Discharged Into the Ocean Because of the Fukushima Daiichi Nuclear Power Plant Disaster", J. Nucl. Sci. Technol., 48(11), 1349-1356 (2011).   DOI
21 M. Nakano and P. Povinec, "Long-term Simulations of the 137Cs Dispersion From the Fukushima Accident in the World Ocean", J. Environ. Radioact., 111, 109-115 (2012).   DOI
22 B.I. Min, R. Perianez, I.G. Kim, and K.S. Suh, "Marine Dispersion Assessment of 137Cs Released From the Fukushima Nuclear Accident", Mar. Pollut. Bull., 72(1), 22-33 (2013).   DOI
23 S. Orre, Y. Gao, H. Drange, and J.E. Nielsen, "A Reassessment of the Dispersion Properties of 99Tc in the North Sea and the Norwegian Sea", J. Mar. Syst., 68(1-2), 24-38 (2007).   DOI
24 R. Perianez, B.I. Min, and K.S. Suh, "The Transport, Effective Half-lives and age Distributions of Radioactive Releases in the Northern Indian Ocean", Mar. Pollut. Bull., 169, 112587 (2021).   DOI
25 M. Villa, J.M. Lopez-Gutierrez, K.S. Suh, B.I. Min, and R. Perianez, "The Behaviour of 129I Released From Nuclear Fuel Reprocessing Factories in the North Atlantic Ocean and Transport to the Arctic Assessed From Numerical Modelling", Mar. Pollut. Bull., 90(1-2), 15-24 (2015).   DOI
26 R. Perianez , R. Bezhenar, I. Brovchenko, C. Duffa, M. Iosjpe, K.T. Jung, T. Kobayashi, L. Liptak, A. Little, V. Maderich, B.I. Min, H. Nies, I. Osvath, K.S. Suh, and G. de With, "Marine Radionuclide Transport Modelling: Recent Developments, Problems and Challenges", Environ. Model. Softw., 122, 104523 (2019).   DOI
27 R. Perianez, "Models for Predicting the Transport of Radionuclides in the Red Sea", J. Environ. Radioact., 223-224, 106396 (2020).   DOI
28 R. Perianez, "APERTRACK: A Particle-tracking Model to Simulate Radionuclide Transport in the Arabian/Persian Gulf", Prog. Nucl. Energy, 142, 103998 (2021).   DOI
29 R. Perianez, K.S. Suh, B.I. Min, and M. Villa-Alfageme, "The Behaviour of 236U in the North Atlantic Ocean Assessed From Numerical Modelling: A new Evaluation of the Input Function Into the Arctic", Sci. Total Environ., 626, 255-263 (2018).   DOI
30 T.F. Hamilton, "Linking Legacies of the Cold War to Arrival of Anthropogenic Radionuclides in the Oceans Through the 20th Century", in: Marine Radioactivity, H.D. Livingston, ed., 23-78, Elsevier (2004).
31 K.O. Buesseler, "Opening the Floodgates at Fukushima", Science, 369(6504), 621-622 (2020).   DOI
32 R. Perianez, F. Qiao, C. Zhao, G. de With, K.T. Jung, C. Sangmanee, G. Wang, C. Xia, and M. Zhang, "Opening Fukushima Floodgates: Modelling 137Cs Impact in Marine Biota", Mar. Pollut. Bull., 170, 112645 (2021).   DOI
33 Open University Course Team, Ocean Circulation, Butterworth-Heinemman, UK (2002).
34 D. Shankar, P.N. Vinayachandran, and A.S. Unnikrishnan, "The Monsoon Currents in the North Indian Ocean", Prog. Oceanogr., 52(1), 63-120 (2002).   DOI
35 M. Tomczak and J.S. Godfrey, Regional Oceanography: An Introduction, 2nd ed., Daya Publishing House, Delhi (2003).
36 R. Bleck, "An Oceanic General Circulation Model Framed in Hybrid Isopycnic-Cartesian Coordinates", Ocean Model., 4(1), 55-88 (2002).   DOI
37 F.A. Schott and J.P. McCreary, "The Monsoon Circulation of the Indian Ocean", Prog. Oceanogr., 51(1), 1-123 (2001).   DOI
38 D.R. Lynch, D.A. Greenberg, A. Bilgili, D.J. Mcgillicuddy, J.P. Manning, and A.L. Aretxabalet, Particles in the Coastal Ocean: Theory and Applications, Cambridge University Press, New York (2014).
39 A.J. Elliott and S. Clarke, "Shallow Water Tides in the Firth of Forth", Hydrogr. J., 87, 19-24 (1998).
40 Y. Masumoto, H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, H. Sakuma, and T. Yagamata, "A FiftyYear Eddy-Resolving Simulation of the World Ocean - Preliminary Outcomes of OFES (OGCM for the Earth Simulator)", J. Earth Simul., 1, 35-56 (2004).
41 J.A. Cummings and O.M. Smedstad, "Variational Data Assimilation for the Global Ocean", in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), S.K. Park and L. Xu, eds., 303-343, Springer, Berlin, Heidelberg (2013).
42 V. Maderich, R. Bezhenar, R. Heling, G. de With, K.T. Jung, J.G. Myoung, Y.K. Cho, F. Qiao, and L. Robertson, "Regional Long-term Model of Radioactivity Dispersion and Fate in the Northwestern Pacific and Adjacent Seas: Application to the Fukushima Dai-ichi Accident", J. Environ. Radioact., 131, 4-18 (2014).   DOI
43 International Atomic Energy Agency, Inventory of Radioactive Material Resulting From Historical Dumping Accidents and Losses at Sea, IAEA-TECDOC-1776, Vienna (2015).
44 C. Zhao, G. Wang, M. Zhang, G. Wang, G. de With, R. Bezhenar, V. Maderich, C. Xia, B. Zhao, K.T. Jung, R. Perianez, M.F. Akhir, C. Sangmanee, and F. Qiao, "Transport and Dispersion of Tritium From the Radioactive Water of the Fukushima Daiichi Nuclear Plant", Mar. Pollut. Bull., 169, 112515 (2021).   DOI
45 N. Usui, T. Wakamatsu, Y. Tanaka, N. Hirose, T. Toyoda, S. Nishikawa, Y. Fujii, Y. Takatsuki, H. Igarashi, Y. Ishikawa, T. Kuragano, and M. Kamachi, "FourDimensional Variational Ocean Reanalysis: A 30-year High-resolution Dataset in the Western North Pacific (FORA-WNP30)", J. Oceanogr., 73(2), 205-233 (2017).   DOI
46 J.A. Proehl, D.R. Lynch, D.J. McGuillicuddy, and J.R. Ledwell, "Modeling Turbulent Dispersion on the North Flank of Georges Bank Using Lagrangian Particle Methods", Cont. Shelf Res., 25(7-8), 875-900 (2015).
47 R. Perianez, K.S. Suh, and B.I. Min, "The Behaviour of 137Cs in the North Atlantic Ocean Assessed From Numerical Modelling: Releases From Nuclear Fuel Reprocessing Factories, Redissolution From Contaminated Sediments and Leakage From Dumped Nuclear Wastes", Mar. Pollut. Bull., 113(1-2), 343-361 (2016).   DOI