• 제목/요약/키워드: radiological technologists

검색결과 746건 처리시간 0.024초

A Study on the Extension of School Years, Two to Three Years, for the Education of Radiologic Technology in Korea (전문대학(專門大學) 방사선과(放射線科)의 수업년한(修業年限) 연장(延長)에 관한 연구(硏究))

  • Choi, Jong-Hak;Lee, Sang-Suk;Kim, Young-Il;Jeon, Man-Jin;Kwon, Dal-Gwan;Park, Young-Sun;Lim, Han-Young;Kang, Se-Sik
    • Journal of radiological science and technology
    • /
    • 제13권2호
    • /
    • pp.1-14
    • /
    • 1990
  • As the institute of education teaching radiologic technology in Korea, different from others, junior college is the only institute which has been managed for it as a two-year educational course for 27 years since 1963 when it was established for the first time in our country irrespective of the needs of the times. But according to the development of medical equipment, variety of medical skill, increase of medical demands now a days, the supply of radiologic technology in modern medicine not only makes it advance as an inevitable factor but also broadens the area of its business systematically. Therefore, we got the following results after we had considered the necessity to lengthen the term of education and searched for the most reasonable way. 1. The term of study of the radiologic technologists in junior college must be lengthened to 3 years from 2 or 3 years regulated in the law of education. 2. In three-year curriculum, the subjects like basic medical science, science and engineering and ultramodern science, etc., which are lated to the new radiologic science must be taught in the junior colleges, and hospital practice also must be a compulsory subject in curriculum. 3. As the school years becomes longer, a lot of programs to make the study effective must be searched, researched and propelled forward.

  • PDF

General Requirements Pertaining to Radiation Protection in Diagnostic X-ray Equipment -KFDA DRS 1-1-3 : 2008 base on IEC 60601-1-3:2008- (진단용 엑스선 장치에 있어서 방사선 방어에 대한 일반 요구사항 -IEC 60601-1-3:2008에 근거한 KFDA DRS 1-1-3:2008-)

  • Kang, Hee-Doo;Dong, Kyung-Rae;Kweon, Dae-Cheol;Choi, Jun-Gu;Jeong, Jae-Ho;Jung, Jae-Eun;Ryu, Young-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • 제11권2호
    • /
    • pp.69-77
    • /
    • 2009
  • This study gives an account of the collateral standards in IEC 60601-1-3: 2008 specifying the general requirements for basic safety and essential performance of diagnostic X-ray equipment regarding radiation protection as it pertains to the production of X-rays. The collateral standards establish general requirements for safety regarding ionization radiation in diagnostic radiation systems and describe a verifiable evaluation method of suitable requirements regarding control over the lowest possible dose equivalent for patients, radiologic technologists, and others. The particular standards for each equipment can be determined by the general requirements in the collateral standard and the particular standard is followed in the risk management file. The guidelines for radiation safety of diagnostic radiation systems is written up in ISO 13485, ISO 14971, IEC 60601-1-3(2002)1st edition, medical electric equipment part 1-3, and the general requirements for safety-collateral standards: programmable electrical medical systems. Therefore the diagnostic radiation system protects citizens' health rights with the establishment and revisions of laws and standards for diagnostic radiation systems as a background for the general requirements of radiation safe guards applies, as an international trend, standards regarding the medical radiation safety management. The diagnostic radiation system will also assure competitive power through a conforming evaluation unifying the differing standards, technical specifications, and recognized processes.

  • PDF

A Study of X-ray Output for Diagnostic X-ray Equipment (진단용 X선 발생 장치의 X선 출력에 관한 연구)

  • Ko, Shin-Gwan;Ahn, Bong-Seon;Jang, Sang-Sup;Choi, Jong-Woon;Shin, Young-Soon
    • Journal of radiological science and technology
    • /
    • 제18권2호
    • /
    • pp.61-73
    • /
    • 1995
  • For the managements of the diagnostic X-ray equipments, the authors examined the output of single phase rectification assembly, Three phase rectification assembly and serial radiographic appartus, and got the following conclusions. 1. When the tube voltages in X-ray control panels ware compared to the measured values on the kVp pulse meter, only little differences were detected in all the X-ray equipments. And most of the equipments were all well managed within the internationally permitted limits, excepting the 12.02 % error at 120 kVp in three phase rectifying assembly. 2. As for the X-ray qualities affecting the X-ray images, the serial radiographic apparatus showed excellence, while the single phase rectification assembly were somewhat inferior to the others only maining the internationally recommended limits. 3. The tube voltage ranges where the X-ray output showed excellence were $100{\sim}200\;mA$ in serial radiographic apparatus, $200{\sim}350\;mA$ in three phase rectification assembly and $350{\sim}400\;mA$ in single phase rectification assembly respectively. 4. In the repeatability test of the X-ray equipments, CVs were in the range of $0.0029{\sim}0.049$, which is within the HEW or KS standards. Consequently all the equipments are thought to be well-manage. 5. This study on characteristics and output of the X-ray equipments was accomplished within a limited short time. Long-time researches on the function managements for the X-ray equipments should be followed along with the periodical checking the output for reduction of X-ray exposures to the patients or radio-technologists, and for maintanance and prediction of trouble of the equipments.

  • PDF

A study on Hemo-Dynamic information Within 30 seconds in DCE 3D Breast MRI : Experienced Reports (DCE 3D Breast MRI 검사 시 30 sec 이내에 혈류 역학적 정보에 대한 연구 : Experienced Reports)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • 제16권1호
    • /
    • pp.27-33
    • /
    • 2014
  • The purpose of this study evaluated the hemo-dynamic information within 30 seconds clinically in 3D breast MRI. From January to March 2014, A total of 40 people were examined at 1.5 Tesla(Philips, Medical System, Achieva, The Netherlands) MRI equipments using 16 channel SENSE breast coil. The imaging parameters on vibrant are fellow as: $TR/TE/FA^{\circ}$/Matrix size/Slice thickness/Slab($5ms/2ms/10^{\circ}/180{\times}139{\times}2mm/80$). This study used a Gadovist and injected it with injection speed of 4 ml /sec by auto injector with 15 ml saline flushing. Firstly, for the delay time study, it divided three different delay time from immediately, 20 seconds, and 30 seconds. In quantitative analysis, the ROI signal intensities of tumor and surrounding tissues were measured retrospectively. In qualitative analysis, the image quality was scored from 1 to 5 point by one experienced radiological technologists as a visual test. The significance level of each delay time was evaluated with a one-way ANOVA(p<0.05). In the visual test, score levels on 30 seconds delay time was a little bit higher than others(p<0.05). The signal intensity of the tumor were $1445{\pm}360$, $1410{\pm}320$, $1510{\pm}415$ on immediately, 20 seconds, and 30 seconds and score levels were $4.18{\pm}0.85$, $3.54{\pm}0.94$, $4.45{\pm}0.74$(p<0.05). The data on immediate images showed better results than that others(p<0.05). Conclusively, Although it has been high scored in 30sec delay time for visual test in order to avoid failure in 20second, 30seconds delay time after contrast media administration, we recommend that the DCE 3D breast MRI commence immediately.

  • PDF

A Study on Exposure Technics in Roentgenography of the Stomach (위조영촬영시(胃造影撮影時) 촬영조건(撮影條件)에 관(關)한 연구(硏究))

  • Kyong, Kwang-Hyon;Kim, Heung-Tai;Kwon, Dal-Kwan;Sun, Han-Kyung;Huh, Joon
    • Journal of radiological science and technology
    • /
    • 제4권1호
    • /
    • pp.45-53
    • /
    • 1981
  • In examinations of the stomach roentgenography, it is imperative to obtain adequate film density throughout all its different regions. Therefore, it is necessary to use more sophiscated exposure techniques. In order to achieve these purpose, the radiologic technologists must be measured abdominal thickness in variations with patient positions. In consideration of these problem, the author was made an experiment on correction method of kVp and mAs by abdominal thickness in roentgenography of the stomach. The results were summarized as follws: 1. When the patient in erect position, abdominal thickness was the most thickened at the level of 3cm inferior to umbilicus without regard to body habitus and it was the most thickened at the level of 3cm superior to umbilicus in prone and supine position. 2. As a result of measuring film density for stomach, the adequate film density was represented from 0.70 to 2.49 in erect position and $0.28{\sim}1.18$ in supine position, $0.5{\sim}2.45$ in prone position. 3. In order to obtain uniform film density in 1.25, the correction factor for kVp by abdominal thickness was represented average ${\pm}4.5kVp\;per\;{\pm}1cm$ in a fixed 50 mAs, and average ${\pm}3.9kVp\;per\;{\pm}1cm$ in a fixed 100mAs. 4. In order to obtain uniform film density in 1.25, the correction factor for mAs by abdominal thickness was represented average ${\pm}30.9%\;per\;{\pm}1cm$ in a fixed 80 kvp and ${\pm}26.9%\;per\;{\pm}1cm$ in a fixed 100kVp.

  • PDF

A Study on Establishment of Basic Safety and Essential Performance Criteria of Mobile Computed Tomography (이동형 전산화단층촬영장치의 기본 안전 및 필수 성능 기준을 마련하기 위한 연구)

  • Kim, Eun Hye;Park, Hye Min;Kim, Jung Min
    • Journal of radiological science and technology
    • /
    • 제44권3호
    • /
    • pp.261-267
    • /
    • 2021
  • As the number of Coronavirus Disease-19 (COVID-19) patients increases in a global pandemic situation, the usefulness of mobile computed tomography (CT) is gaining attention. Currently, mobile CT follows the basic safety and essential performance evaluation criteria of whole-body or limited-view X-ray CT in order to obtain device approval and evaluation in the Republic of Korea. Unlike stationary CT, mobile CT is not operated in shielded areas but rather areas such as intensive care units, operating rooms, or isolation rooms. Therefore, it requires a different basic safety and essential performance evaluation standard than stationary CT. In this study, four derived basic safety evaluation criteria related to electrical, mechanical, and radiation safety were included (dose indication test, protection against stray radiation, safety measures against excessive X-rays, half-value layer measurement); and seven essential performance evaluation criteria were included (tube voltage accuracy, mAs accuracy, radiation dose reproducibility, CT number of water, noise, uniformity, and spatial resolution); total eleven basic safety and essential performance evaluation criteria were selected. This study aims to establish appropriate basic safety and essential performance evaluation criteria for simultaneously obtaining images with diagnostic value and reducing the exposure of nearby patients, medical staff, and radiologic technologists during the use of mobile CT.

Investigation of the Time Required for General Radiography (일반 방사선검사의 소요 시간 실태조사)

  • Lim, Woo-Taek;Joo, Young-Cheol;Kim, Yon-Min
    • Journal of radiological science and technology
    • /
    • 제45권3호
    • /
    • pp.255-262
    • /
    • 2022
  • In this study, by analyzing the examination time for each procedure, the appropriate workload of radiologic technologist is analyzed based on the actual examination time in the current clinical setting by comparing with the examination time in the radiology field setting of the health insurance review and assessment service. In addition, this result is introduced into the calculation of relate value units; it was attempted to provide accurate and objective evidence in the field of radiology. From May 2020 to December 2021, the study retrospectively investigated the examination times recorded in the electronic medical record and picture archiving and communication system at 5 tertiary general hospitals and 1 general hospital. The total of 16 examination parts are applied in this study, including the head, sinuses, chest, ribs, abdomen, pelvis, cervical, thoracic, lumbar, shoulder, elbow, wrist, hip, femur, knee, and ankle. The minimum number of images that could be obtained per radiation generator was 3.6 images for one hour, and the maximum was 6.4 images. When 50% median of procedure time is calculated, the minimum number of images that could be obtained was 16.7 images and maximum was 35.3 images; in addition, minimum examination time is 1.7 minutes, and maximum time is 3.6 minutes. In conclusion, it is judged that there will be insufficient explanation time for basic infection instructions such as hand hygiene during the examinations in current clinical practice. It is believed that radiologic technologists will contribute to providing higher-quality of radiation examination services to the public by complying with guidelines for work and setting appropriate workload on their own.

Analysis of the Impact of Organizational Safety Culture on Radiology Technologists Awareness of Patient Safety and Safety Behavior (조직안전문화가 방사선사의 환자 안전에 대한 의식 및 안전 행동에 미치는 영향분석)

  • Won-Tae Kim;Hyeon-Jin Kim
    • Journal of the Korean Society of Radiology
    • /
    • 제17권4호
    • /
    • pp.615-623
    • /
    • 2023
  • This study was conducted to examine the effect of organizational safety culture on radiologists' awareness of patient safety and safety behavior. The study was conducted based on the results of the survey, and the survey was divided into three factors: general characteristics, efforts for patient safety, and patient safety culture. As a result of the study, age, work experience, and work satisfaction were influencing factors in general characteristics, and gender, academic background, and work type were not included as factors affecting differences in patient safety awareness. In efforts for patient safety, hospital support and education, patient safety activities, and how to respond to errors were all influencing factors, especially how to respond to errors were more relevant than other items. The patient safety culture was analyzed on two items: teamwork and open communication, and both items were highly related to radiologists' awareness of patient safety.

Usability Evaluation of Foot Pedal Switch in X-ray Radiography System (진단용 엑스선 촬영장치에서 발판 스위치의 유용성 평가)

  • Kwon, Hyeokjin;Jung, Hongmoon;Jung, Jaeeun;Jung, Kyunghwan;Won, Doyeon
    • Journal of the Korean Society of Radiology
    • /
    • 제12권5호
    • /
    • pp.651-658
    • /
    • 2018
  • A foot pedal switch in the diagnosis x-ray radiography system has been researched to improve radiologic technologist works and patient satisfaction. The switch has been installed in the diagnosis x-ray radiography system used in domestic clinics. Quantitative evaluation has been conducted by measuring the exposure dose reproducibility test, tube voltage, mAs, and percentage average error. Qualitative evaluation has been conducted by analysis of the radiologic technologists questionnaire. In the quantitative evaluation for the use of the foot pedal switch, the coefficient of variation was less than 0.05 in the exposure dose reproducibility test. In the mAs test, percentage average error of ${\pm}20%$ was measured. There was no problem raised since it meets the all inspection standards of the diagnosis x-ray generator. In the qualitative evaluation, most of the opinions are that it has a clinical value for the foot pedal switch in the diagnosis x-ray radiography system. Therefore, developing the foot pedal switch for the diagnosis x-ray radiography system can improve effectively the rapidity and accuracy of the radiologic technologist work. In addition, it is effective in decreasing the x-ray exposure of patients and increasing satisfaction for the medical service due to reduction of retaking x-ray.

Reading and Influence of Personal Dose Meter in University Hospital C (C 대학병원의 개인선량계 판독과 영향)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • 제16권3호
    • /
    • pp.357-363
    • /
    • 2022
  • This study aims to improve the safety inspection awareness of occupational exposure and help radiation safety management by analyzing radiation exposure doses by occupational type of radiation related-workers and radiation workers. Radiation-related workers and radiation workers were classified into three occupations (radiological technologist, doctors, and nurses). A nominal risk coefficient based on ICRP 103 was used to calculate the probability of causing side effects of the lungs due to exposure doses. As a result of analyzing the exposure dose of all workers for one year, the exposure dose of radiological technologist among radiation-related workers was 1.63 ± 2.84 mSv, doctors 0.12 ± 0.22 mSv, and nurses 0.59 ± 1.08 mSv. The one-year deep dose for radiation workers was 2.44 ± 3.30 mSv for radiological technologists, 0.19 ± 0.26 mSv for doctors, and 0.12 ± 0.00 mSv for nurses. Due to this dose, the probability of causing side effects in the lungs was 1.2 per 100,000 radiological technologist, 0.096 doctors, and 0.06 nurses. In this study, it is believed that the probability of side effects on lungs by occupation of radiation exposure dose will be studied and used as useful data for radiation safety management in relation to probabilistic effects in the future.