• Title/Summary/Keyword: radioactive wastes

Search Result 337, Processing Time 0.02 seconds

Destruction of Spent Organic ion Exchange Resins by Ag(II)-Mediated Electrochemical Oxidation (Ag(II)매개산화에 의한 폐 유기이온교환수지의 분해)

  • Choi Wang-Kyu;Nam Hyeog;Park Sang-Yoon;Lee Kune-Woo;Oh Won-Zin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.183-189
    • /
    • 1999
  • A study on the destruction of organic cation and anion exchange resins by electro-generated Ag(II) as a mediator was carried out to develop the ambient-temperature aqueous process, known as Ag(II)-mediated electro-chemical oxidation (MEO) process, for the treatment of a large quantity of spent organic ion exchange resins as the low and Intermediated-level radioactive wastes arising from the operation, maintenance and repairs of nuclear facilities. The effects of controllable process parameters such as applied current density, temperature, and nitric acid concentration on the MEO of organic ion exchange resins were investigated. The cation exchange resin was completely decomposed to $CO_2$. The current efficiency increased with a decrease in applied current density while nitric acid concentration and temperature on the MEO of cation exchange resin did not affect the MEO. On the other hand, anion exchange resins were decomposed to CO and $CO_2$. The ultimate conversion to CO was about $10\%$ regardless of temperature. The destruction efficiencies to $CO_2$ were dependent upon temperature and the effective destruction of anion exchange resin could be obtained above $60^{\circ}C$.

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

Investigation on Natural Radioactivity of Environmental Samples Near the Phosphate Rock Processing Facility (인광석 사용업체 주변 환경시료의 자연방사능 조사)

  • Lee, Gill-Jae;Koh, Sang-Mo;Chang, Byung-Uck;Kim, Tong-Kwon;Kim, Young-Ug
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.37-48
    • /
    • 2011
  • Some industrial minerals used in domestic industries such as monazite, apatite, bauxite, and ilmenite belong to NORM (Naturally Occurring Radioactive Materials) because they show a high radioactivity. Products, semi-products, wastes, and by-products which show higher radioactivity than NORM belong to TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials). Apatite used for manufacturing phosphate fertilizer in Namhae Chemical company belongs to NORM, and its by-product, phospo-gypsum, belongs to TENORM. A geological investigation is needed for the future environmental impact assessment of the Namhae Chemical company's site. According to survey results of the Namhae Chemical company's site, soil mineral composition indicated the mixture of minerals derived from the country rock (quartz, feldspar, mica, $l4{\AA}$ mineral, kaolin and amphibole) and minerals from the gypsum open-air storage yard (gypsum and apatite). Soil samples showed average content of U 4.6 ppm and Th 10 ppm, which are similar to average crustal abundances. They also show average contents of $^{40}K$ 191-1,166 Bq/kg, $^{226}Ra$ 15.6-710 Bq/kg, and $^{232}Th$ 17.4-72.7 Bq/kg, which indicate moderate levels of radio nuclide. But $^{226}Ra$ anomaly in the gypsum open storage yard is clearly confirmed and $^{232}Th$ anomaly is also confirmed in the east road side of the factory and nearby mountain areas. Soil external hazard indices ranged 0.24-2.01 with the average 0.54. Although most external hazard indices were lower than 1, which means radiation hazard index to be negligible, 5 samples out of total 40 samples showed higher values than 1, and further detailed investigation is needed.

Stabilization of Radioactive Molten Salt Waste by Using Silica-Based Inorganic Material (실리카 함유 무기매질에 의한 폐용융염의 안정화)

  • Park, Hwan-Seo;Kim, In-Tae;Kim, Hwan-Young;Kim, Joon-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.171-177
    • /
    • 2007
  • This study suggested a new method to stabilize molten salt wastes generated from the pyre-process for the spent fuel treatment. Using conventional sol-gel process, $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic material that is reactive to metal chlorides were prepared. In this paper, the reactivity of SAP with the metal chlorides at $650{\sim}850$, the thermal stability of reaction products and their leach-resistance under the PCT-A test method were investigated. Alkali metal chlorides were converted into metal aluminosilicate($LixAlxSi1-_xO_{2-x}$) and metal phosphate($Li_3PO_4\;and\;Cs_2AlP_3O_{10}$) While alkali earth and rare earth chlorides were changed into only metal phosphates ($Sr_5(PO_4)_3Cl\;and\;CePO_4$). The conversion rate was about $96{\sim}99%$ at a salt waste/SAP weight ratio of 0.5 and a weight loss up to $1100^{\circ}C$ measured by thermogravimetric analysis were below 1wt%. The leach rates of Cs and Sr under the PCT-A test condition were about $10^{-2}g/m^2\;day\;and\;10^{-4}g/m^2\;day$. From these results, it could be concluded that SAP can be considered as an effective stabilizer for metal chlorides and the method using SAP will give a chance to reduce the volume of salt wasteform for the final disposal through further researches.

  • PDF

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

Synthesis of Garnet in the Ca-Ce-Gd-Zr-Fe-O System (Ca-Gd-Ce-Zr-Fe-O계에서의 석류석 합성 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook;Yudintsev S.V.
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.187-196
    • /
    • 2005
  • Structural sites which cations can occupy in garnet structure are centers of the tetrahedron, octahedron, and distorted cube sharing edges with the tetrahedron and octahedron. Among them, the size of cation occuping at tetrahedral site (the center of tetrahedron) is closely related with the size of a unit cell of garnet. Accordingly, garnet containing iron with relative large ionic radii in tetrahedral site can be considered as a promising matrix for the immobilization of the elements with large ionic radii, such as actinides in radioactive wastes. We synthesized several garnets with the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$, and studied their properties and phase relations under various conditions. Mixed samples were fabricated in a pellet form under a pressure of $200{\~}400{\cal}kg/{\cal}cm^2$ and were sintered in the temperature range of $1100\~1400^{\circ}C$ in air and under oxygen atmospheres. Phase identification and chemical analysis of synthesized samples were conducted by XRD and SEM/EDS. In results, garnet was obtained as the main phase at $1300^{\circ}C$, an optimum condition in this system, even though some minor phases like perovskite and unknown phase were included. The compositions of garnet and perovskite synthesized from the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$ were ranged $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$ and $Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$, respectively. Ca content was exceeded and Ce content was depleted in the 8-coordinated site, comparing to the initial batch composition. This phenomena was closely related to the content of Zr and Fe in the 6-coordinated site.

Site Competition of Ca2+ and Cs+ Ions in the Framework of Zeolite Y (Si/Al = 1.56) and Their Crystallographic Studies (제올라이트 Y (Si/Al = 1.56) 골격 내의 Ca2+과 Cs+ 이온의 자리 경쟁 및 그들의 결정학적 연구)

  • Kim, Hu Sik;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • The present work was performed in order to study the effect of competing cation of $Ca^{2+}$ ion on ion exchange of $Cs^+$ on zeolite Y (Si/Al = 1.56). Three single-crystals of fully dehydrated and partially $Cs^+$-exchanged zeolites Y (Si/Al = 1.56) were prepared by the flow method using mixed ion-exchange solutions. The $CsNO_3:Ca(NO_3)_2$ molar ratios of the ion exchange solution were 1 : 1 (crystal 1), 1 : 100 (crystal 2), and 1 : 250 (crystal 3) with a total concentration of 0.05 M. The single-crystals were then vacuum dehydrated at 723 K and $1{\times}10^{-4}Pa$ for 2 days. The structures of the crystals were determined by single-crystal synchrotron X-ray diffraction technique in the cubic space group $Fd{\bar{3}}m$, at 100(1) K. The unit-cell formulas of crystals 1, 2, and 3 were ${\mid}Cs_{21}Ca_{27}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, ${\mid}Cs_2Ca_{36.5}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, and ${\mid}Cs_1Ca_{37}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, respectively. In all three crystals, the $Ca^{2+}$ ions preferred to occupy site I in the D6Rs, with the remainder occupying sites I', II', and II. On the other hand, the significant differences in the fractional distribution of $Cs^+$ ions are observed depending on the intial $Cs^+$ concentrations in given ion exchange solution. In Crystal 1, $Cs^+$ ion are located at sites II', II, III, and III', and in crystal 2, at sites II, IIIa, and IIIb. In crystal 3, $Cs^+$ ions are only located at sites IIIa and IIIb. The degree of $Cs^+$ ion exchange decreased sharply from 28.0 to 2.7 to 1.3 % as the initial $Ca^{2+}$ concentration increases and the $Cs^+$ content decreases.