• Title/Summary/Keyword: radio resource sharing

Search Result 47, Processing Time 0.019 seconds

Interference-limited Resource Allocation in Cognitive Radio Networks with Primary User Protection.

  • Mui, Nguyen Van;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.352-354
    • /
    • 2011
  • The performance of multihop cognitive radio networks (CRN) can be improved significantly by using multiple channels in spectrum underlay fashion. However, interference due to the sharing of common radio channel and congestion due to the contention among those flows that share the same links become an obstacle to meet this challenge. How to control efficiently congestion and allocate power optimally to obtain a high end-to-end throughput is a key objective in this work. We reexamined the Network Utility Maximum (NUM) problem with a new primary outage constraint and proposed a novel resource allocation strategy to solve it effectively and efficiently.

Resource Allocation for Device-to-Device Communications Reusing Uplink in Cellular Networks

  • Radwan, Amr
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1468-1474
    • /
    • 2015
  • Efficient spectrum sharing is an important issue in Device-to-Device (D2D) communications underlaying cellular networks as it can mitigate the interference to cellular users and improve the performance of the systems. In this paper, we formulate the radio resource allocation in D2D communications as a mixed nonlinear integer programing. We show the formulated problem is NP-hard and thus a polynomial time algorithm to solve is not possible. Since such a problem is very hard to obtain the optimal solution within a short running time, we instead propose a fast heuristic suboptimal algorithm to mitigate the interference caused to cellular users and improve the performance of the systems. Simulation results are provided to evaluate the performance of the proposed algorithm.

Energy Efficiency Resource Allocation for MIMO Cognitive Radio with Multiple Antenna Spectrum Sensing

  • Ning, Bing;Yang, Shouyi;Mu, Xiaomin;Lu, Yanhui;Hao, Wanming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4387-4404
    • /
    • 2015
  • The energy-efficient design of sensing-based spectrum sharing of a multi-input and multi-output (MIMO) cognitive radio (CR) system with imperfect multiple antenna spectrum sensing is investigated in this study. Optimal resource allocation strategies, including sensing time and power allocation schemes, are studied to maximize the energy efficiency (EE) of the secondary base station under the transmit power and interference power constraints. EE problem is formulated as a nonlinear stochastic fractional programming of a nonconvex optimal problem. The EE problem is transformed into its equivalent nonlinear parametric programming and solved by one-dimension search algorithm. To reduce searching complexity, the search range was founded by demonstration. Furthermore, simulation results confirms that an optimal sensing time exists to maximize EE, and shows that EE is affected by the spectrum detection factors and corresponding constraints.

Survey of Artificial Intelligence Approaches in Cognitive Radio Networks

  • Morabit, Yasmina EL;Mrabti, Fatiha;Abarkan, El Houssein
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.21-40
    • /
    • 2019
  • This paper presents a comprehensive survey of various artificial intelligence (AI) techniques implemented in cognitive radio engine to improve cognition capability in cognitive radio networks (CRNs). AI enables systems to solve problems by emulating human biological processes such as learning, reasoning, decision making, self-adaptation, self-organization, and self-stability. The use of AI techniques is studied in applications related to the major tasks of cognitive radio including spectrum sensing, spectrum sharing, spectrum mobility, and decision making regarding dynamic spectrum access, resource allocation, parameter adaptation, and optimization problem. The aim is to provide a single source as a survey paper to help researchers better understand the various implementations of AI approaches to different cognitive radio designs, as well as to refer interested readers to the recent AI research works done in CRNs.

Erlang Capacity of Cognitive Radio Systems Utilizing Buffer for Spectrum Handoff Calls (스펙트럼 핸드오프 호를 위해 버퍼를 활용하는 무선인지시스템의 얼랑 용량)

  • Pham, Thi Hong Chau;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.145-150
    • /
    • 2010
  • In this paper, the performance of cognitive radio network is analyzed in terms of Erlang capacity. To improve the Erlang capacity with respect to primary user (PU) and secondary user (SU) traffic, we propose an efficient radio resource management scheme utilizing the buffer for new SUs and interrupted SUs. Markov model is developed, and analyzed to derive the performances of the proposed spectrum sharing scheme in both primary system and secondary system. To determine the Erlang capacity region, the blocking probability, the forced termination probability and the non-completion probability are calculated. Simulation results provide insight into the advantages of the buffer utilization. It is observed that the supportable traffic loads of PU and SU can be increased significantly according to the buffer length.

Orthogonal Code Sharing and Radio Resource Allocation in Multibeam Satellite Communication Systems (다중빔 위성 통신 시스템에서 빔간 직교 코드 공유 기법과 동적 무선 자원 할당)

  • Lim, Kwang-Jae;Kim, Soo-Young;Oh, Deok-Gil;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.140-150
    • /
    • 2003
  • In this paper, we propose a novel code sharing method for downlink transmission of mobile satellite communication systems using a multibeam geosynchronous-orbit satellite. In the proposed system, spreading codes are shared among downlink beams in order to increase the system capacity. We also propose efficient radio resource and transmit power allocation schemes for the proposed system. Simplified analysis and simulation results on the system capacity show the capacity improvement by the proposed scheme. The simulation results show that the capacity of the proposed system is more than 2 times as large as that of a conventional multibeam satellite system. In the frequency-selective fading channel, the capacity improvement increases as the interference between orthogonal spreading codes decrease.

Large-Scale Joint Rate and Power Allocation Algorithm Combined with Admission Control in Cognitive Radio Networks

  • Shin, Woo-Jin;Park, Kyoung-Youp;Kim, Dong-In;Kwon, Jang-Woo
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2009
  • In this paper, we investigate a dynamic spectrum sharing problem for the centralized uplink cognitive radio networks using orthogonal frequency division multiple access. We formulate a large-scale joint rate and power allocation as an optimization problem under quality of service constraint for secondary users and interference constraint for primary users. We also suggest admission control to nd a feasible solution to the optimization problem. To implement the resource allocation on a large-scale, we introduce a notion of using the conservative factors $\alpha$ and $\beta$ depending on the outage and violation probabilities. Since estimating instantaneous channel gains is costly and requires high complexity, the proposed algorithm pursues a practical and implementation-friendly resource allocation. Simulation results demonstrate that the large-scale joint rate and power allocation incurs a slight loss in system throughput over the instantaneous one, but it achieves lower complexity with less sensitivity to variations in shadowing statistics.

Radio Resource Management Algorithm for Uplink Coordinated Cooperative Spatial Multiplexing (셀 간 협동 CSM에서 상향 링크 용량 개선을 위한 자원 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1311-1317
    • /
    • 2010
  • In this paper, for a uplink space division multiple access system named cooperative spatial multiplexing(CSM), radio resource management(RRM) algorithms are proposed based on sharing uplink channel information among a serving base station(BS) and interfering BSs in a uplink coordinated wireless communication system. A constrained maximum transmit power algorithm is proposed for mobile station(MS) to limit uplink inter-cell interference(ICI). And joint scheduling algorithm among coordinated BSs is proposed to enhance uplink capacity through ICI mitigation by using channel information from interfering BSs. It is shown that the proposed RRM algorithm provides a considerable uplink capacity enhancement by effective ICI mitigation only with moderate complexity.

Statistically Controlled Opportunistic Resource Block Sharing for Femto Cell Networks

  • Shin, Dae Kyu;Choi, Wan;Yu, Takki
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.469-475
    • /
    • 2013
  • In this paper, we propose an efficient interference management technique which controls the number of resource blocks (or subcarriers) shared with other cells based on statistical interference levels among cells. The proposed technique tries to maximize average throughput of a femto cell user under a constraint on non-real time control of a femto cell network while guaranteeing a target throughput value of a macro cell user. In our proposed scheme, femto cells opportunistically use resource blocks allocated to other cells if the required average user throughput is not attained with the primarily allocated resource blocks. The proposed method is similar to the underlay approach in cognitive radio systems, but resource block sharing among cells is statistically controlled. For the statistical control, a femto cell sever constructs a table storing average mutual interference among cells and periodically updates the table. This statistical approach fully satisfies the constraint of non-real time control for femto cell networks. Our simulation results show that the proposed scheme achieves higher average femto user throughput than conventional frequency reuse schemes for time varying number of users.

A study on Spectrum Allocation for Very High Speed Wireless Access Network in 5GHz Band (5GHz대역 초고속 무선랜의 주파수분배에 관한 연구)

  • 허보진;이재욱;박덕규
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.474-479
    • /
    • 2003
  • We discussed the usage of a radio resource, the spectrum allocation and the trends of policy about 5㎓ band in other countries, We studied about the technical regulation on high speed wireless access system and the spectrum allocation of ISM bard in 5㎓ bard for other countries. We also analyzed the efficient use of radio resource, the method of frequency sharing and the calculation of spec01m requirement in noel to progress the high speed wireless access system In addition We proposed the schemes of domestic spectrum allocation for high speed wireless access system at 5㎓ band

  • PDF