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Large-Scale Joint Rate and Power Allocation
Algorithm Combined with Admission Control
in Cognitive Radio Networks

Woo Jin Shin, Kyoung Youp Park, Dong In Kim, and Jang Woo Kwon

Abstract: In this paper, we investigate a dynamic spectrum shar-
ing problem for the centralized uplink cognitive radio networks
using orthogonal frequency division multiple access. We formulate
a large-scale joint rate and power allocation as an optimization
problem under quality of service constraint for secondary users
and interference constraint for primary users. We also suggest ad-
mission control to find a feasible solution to the optimization prob-
lem. To implement the resource allocation on a large-scale, we in-
troduce a notion of using the conservative factors v and 3 depend-
ing on the outage and violation probabilities. Since estimating in-
stantaneous channel gains is costly and requires high complexity,
the proposed algorithm pursues a practical and implementation-
friendly resource allocation. Simulation results demonstrate that
the large-scale joint rate and power allocation incurs a slight loss
in system throughput over the instantaneous one, but it achieves
lower complexity with less sensitivity to variations in shadowing
statistics.

Index Terms: Cognitive radio (CR), geometric programming,
large-scale fading, orthogonal frequency division multiple access
(OFDMA), outage probability, resource allocation, small-scale fad-
ing, violation probability.

I. INTRODUCTION

Orthogonal frequency division multiple access (OFDMA) is
a promising modulation and access scheme for the proposed fu-
ture wireless network standard like 4G cellular networks. For
the network based on OFDMA, due to the large capacity that
can be provided by OFDMA, it could be possible that the system
is under-utilized and more profits can be obtained by exploiting
cognitive radio (CR). In CR, unlicensed secondary users (SUs)
can access the spectrum resources leased to the licensed primary
users (PUs) with spectrum overlay and spectrum underlay so
that limited spectrum resource can efficiently be utilized [1]. In
spectrum overlay, SUs are allowed to access spectrum resources
only when PUs do not use this resource. In spectrum underlay,
unlicensed SUs can share the spectrum resource with licensed
PUs under an interference limit (or spectral mask) defined as
a maximum allowed interference at primary receiving points.
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To successfully deploy spectrum underlay based cognitive radio
networks (CRNs), two apparently conflicting constraints must
be satisfied simultaneously:

1) The quality of service (QoS) constraint (in terms of
minimum required signal-to-interference-plus-noise ratio
(SINR)) for SUs at each subcarrier.

2) Interference constraint for PUs to be protected from any
harmful interference caused by SUs, that results from shar-
ing the common spectrum resource.

Therefore, to meet these two constraints simultaneously, joint
rate and power allocation algorithm combined with admission
control is a prerequisite for the CRNs.

In literature, given information on all channel gains is avail-
able, resource allocation algorithms under QoS and interference
constraints in code division multiple access (CDMA) system
were proposed in [2] and [3]. However, from the practical point
of view, it is difficult for low-end SUs to fast and accurately
track the instantaneous channel gains. Moreover, the resource
allocation adaptive to fast variations in the channel gains will
increase the complexity associated with frequent measurements
and updates. Especially, a threshold called the “spectral mask™
should be predetermined to protect PUs from any harmful in-
terference caused by SUs in CRNs. Consequently, in order to
determine the spectral mask, an exact channel gain information
is necessary so that the efficiency of the spectrum usage could be
degraded because of the overhead caused by frequent exchanges
of channel gain information across CRNs. More flexible ap-
proach that exploits the averaged channel gain was proposed in
[4], where the outage and violation probabilities against small-
scale fading for secondary and primary user links were intro-
duced in single-carrier wideband code division multiple access
(WCDMA) multi-cell model.

In this paper, we propose a large-scale joint rate and power
allocation algorithm combined with admission control for up-
link OFDMA based CRNs. We are concerned with the vari-
ations in large-scale fading and introduce the concept of out-
age and violation events against small-scale fast fading. This
idea is similar to that given in [4]. However, this paper consid-
ers multi-cell CRNs with multi-carrier channel assignment, and
admission control is also incorporated into the resource alloca-
tion algorithm to obtain a feasible solution to the optimization
problem. In the process of solving the optimization problem, if
any subcarrier assigned to a SU cannot be supported in terms
of QoS, admission control is initiated to assure the QoS con-
straint on each SU’s assigned subcarriers; otherwise we carry
out the large-scale joint rate and power allocation without per-
forming admission control. Our simulation results show that the
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proposed large-scale resource allocation algorithm can consid-
erably reduce the complexity with a slight loss in throughput,
and the two conservative « and (3 factors have less sensitivity to
variations in shadowing statistics which is desired for CR oper-
ation.

The rest of the paper is organized as follows. Section II de-
scribes the system model and defines mean channel gain. Large-
scale constraints are first defined and then the corresponding
resource allocation problem is formulated in Section III. Sec-
tion IV presents the geometric programming and its transfor-
mation method. The proposed large-scale joint resource alloca-
tion algorithm is described in Section V. Section VI verifies the
performance of the proposed algorithm by simulations. Finally,
concluding remarks are stated in Section VII.

II. SYSTEM MODEL AND MEAN CHANNEL GAIN

In this section, we first describe the system model, and then
define mean channel gain which is averaged over small-scale
fading.

A. System Model

We consider M multi-cell OFDMA based CRNs where L
SUs and one base station (BS) exist in each cell and the total
number of OFDM subcarriers is K. In each cell, subcarriers
are assigned to SUs exclusively so that there is no intra-cell in-
terference, whereas subcarriers are shared among different cells
and this will cause inter-cell interference. In this paper, we as-
sume that all channel information, such as path loss, shadowing
and geo-location of PUs and SUs, is a priori known to each BS.
Based on this information, each BS allocates resources to the
SUs in its own cell.

For the uplink OFDMA , the SINR of the ¢th SU in the mth
cell at subcarrier k, f1;(m),1, can be expressed as:

gg?i(m),kpi(m)vk

(1

/’Lz(m),k = M (5)
Zn:lm;ﬁm Ej gm,j(n),kpj(”)vk + Ni(m),k

where i(m) represents the ith SU in the mth cell, g(s)i(m) & 1S

the channel gain from the ith SU to its corresponding BS in the
mth cell at subcarrier k, gfrsl)j (n).k is the channel gain from the
jth SU in the nth cell to the BS in the mth cell, Py, 4 is the
transmitted power of the ith SU in the mth cell at subcarrier £,
and Ny, is the ith SU’s noise power at subcarrier k. We as-
sume that N;(,,) x = No By, for all SUs, where N, is one-sided
noise power spectral density and By is the kth subcarrier band-
width.

B. Mean Channel Gain

In general, it is difficult to estimate the instantaneous chan-
nel gains, and adjusting the power and rate allocation to the
changes in small-scale fading could increase the system com-
plexity and cost. For this reason, we assume that the mean chan-
nel gains (path loss and shadowing) averaged over small-scale
fading (Rayleigh fading) are available for the resource alloca-
tion on a large-scale. The channel gain from the ¢th SU to the
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corresponding mth receiving point at subcarrier k, gr(:;)l. (m),k €N
be decomposed into

(s) _ —=(s)
gm,i(m),k - Um,i(m),kgm,i(m),k (2)
where 07(;)1 (m).k is the small-scale fading with mean value nor-

malized to one at subcarrier k£, and gfs)i(m)_k represents the

mean channel gain, i.e., local average (with respect to small-
(s)

myi(m),k

scale fading) of g

III. LARGE-SCALE CONSTRAINT AND
PROBLEM FORMULATION

In this section, we define large-scale QoS and interference
constraints, respectively. With defined large-scale constraints,
we introduce the outage and violation probability constraints,
respectively, and then formulate the large-scale optimization
problem.

A. Large-Scale QoS Constraint

We can express an instantaneous QoS constraint for the :th
SU in the mth cell at subcarrier & as follows:

Hi(m),k > Yi(m),k (3)

where (1;(,m) 1, is an instantaneous SINR of the ith SU in the mth
cell at subcarrier k, as given in (1) and 7;(y,),x is the minimum
required SINR for the ith SU in the mth cell at subcarrier k. By
replacing the instantaneous channel gain in (1) with the mean
channel gain defined in (2), we can express an averaged SINR
of the ith SU at subcarrier &, 1i;(,,,) 1, as:

—(s)
gm,i(m),kpi(m)vk

4)

ﬁi(m)J@ = M —(s ’
Zn:l,n#m Z] gfn?](n)kp(n)’k + No By,

With the averaged SINR, the large-scale QoS constraint can
be formulated as

Hi(m)k = OYi(m),k &)

where « acts as a conservative factor that implies a kind of mar-
gin for the QoS constraint.

Then, we can define the outage event as that occurs when
the instantaneous QoS constraint in (3) is not satisfied, given
the large-scale QoS constraint in (5) is satisfied. Therefore, the
outage probability constraint for large-scale QoS requirements
on the secondary links is defined as:

Pr{si(m) e < Yigmyk | Tim) ke = Vim) 6] < 54 (6)

where some o > 1 and §(*) denotes the predetermined maxi-
mum outage probability allowed for SUs at each subcarrier.

B. Large-Scale Interference Constraint

Although the primary and secondary systems exploit different
channel access schemes, since they share the common channel,
total interference induced by SUs to primary receiving point ¢
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can be obtained by a linear sum of all interferences at each sub-
carrier. The instantaneous sum interference induced by SUs to
the primary receiving point g, 7, and the instantaneous interfer-
ence constraint can be expressed as follows:

M L
M= D0 D GmyPimn )

m=1 =1 kESi(m)

ng <1y (®)

where g((fi)(mx i 18 the channel gain from the ith SU in the mth

cell to the primary receiving point ¢ at subcarrier k, Sj(m) is
the set of subcarriers assigned to the ith SU and T}, denotes the
tolerable interference limit at primary receiving point ¢, ¢ =
1,2,---,0Q.

Similar to the above large-scale QoS constraint case, if we
replace the instantaneous channel gain in (7) by the mean chan-
nel gain, an averaged sum interference, 77, and the large-scale
interference constraint can be formulated as:

M L
URDIDIDS
m=11=1 k€Sjm)
ny < BT,

where 3 acts as a conservative factor that implies a kind of mar-
gin for the interference constraint.

The violation probability constraint for large-scale interfer-
ence limits on the primary receiving points can be defined as:

(1)

Ty i Py ©)

(10)

Pr[n, > T, | Mg < BT, < 5@

where some 3 < 1 and §(P) denotes the predetermined maxi-
mum interference violation probability allowed for primary re-
ceiving points.

To ensure that the large-scale QoS and interference con-
straints defined in (5) and (10), respectively, are effective, the
two conservative factors o« > 1 and 3 < 1 should be estimated
to meet the constraints on outage and violation probabilities de-
fined (6) and (11), respectively.

C. Problem Formulation

Our goal is to find an optimal resource allocation solution
which maximizes the total sum rate of the system under the
constraints (5), (6), (10), and (11). However, only after we ob-
tain the solution satisfying the large-scale QoS and interference
constraints, we can see whether the constraints on outage and
violation probabilities are satisfied. For this reason, we divide
a total resource allocation problem into two sub-problems such
as large-scale optimization problem and outage and violation
events check problem.

We first formulate the large-scale optimization problem under
the maximum power constraint and large-scale constraints (i.e.,
QoS and interference constraints, (5) and (10), respectively).
This large-scale optimization problem can be expressed as:

M L
maximizezz Z Riim),k

m=1i=1 keS,(m)

12)
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subject to
Hi(m),k = OYi(m),k
n, < BTy

Z Pi(m),k’ < PZ(n,%E
keSi(m)

where R;(,,) 1. represents the ith SU’s data rate at subcarrier F,
given by Ri(m) 1. = B 1082 (1 + Ti(m) Hi(m) i )» Ti(m) is an SNR
gap of the ith SU according to the modulation format and bit
error rate (BER) requirement, Pf&fg is the maximum transmit
power allowed to the ¢th SU. In this paper, we assume that By,
is the same for all subcarriers, i.e., B = B and Ti(m) is equal
to 1.

The above large-scale optimization problem is an intractable
nonlinear optimization problem that may appear to be NP-hard
problems [5], [6]. However, we will suggest the method to trans-
form the proposed optimization problem into geometric pro-
gramming (GP) which can be transformed into the convex opti-
mization problem [5], [6]. In the next section, we discuss about
the GP and then transform the optimization problem in (12) into
GP.

IV. TRANSFORMATION OF THE OPTIMIZATION
PROBLEM

In this section, we first introduce the GP and then transform
the proposed optimization problem into GP in standard form.

A. Geometric Programming

GP is a type of mathematical optimization problem which is
nonlinear, non-convex. However, because an optimization prob-
lem formulated in GP format can be converted into a convex
optimization problem, a local optimum could also be a global
optimum and a global optimum can always be computed very
efficiently [5], [6].

Let & = (21,2, -, 2,) denote a vector with component x;.
A real valued function f of & is defined as

f(@) = caralz. . gl (13)
where the multiplicative constant ¢ > 0 and the exponential
components d; € R, i =1,2,--- n, is called a monomial func-
tion or monomial.

A function which is a sum of one or more monomials is called

a posynomial function or posynomial and it can be expressed as

K
. dyy d d,
f(@) = g cpry P ay® My (14)
k

where ¢, > 0 and dy) € Rfori = 1,2,---nand k =
1,2,--- K.

GP in standard form is an optimization problem of the form
which minimizes a posynomial objective function subject to
posynomial upper bound inequality constraints (i.e., less than
equal to one) and monomial equality constraints (i.e., equal to
one):

minimize fj (&) (15)
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subject to

gj(f) = 17] = 1727"'710

where f;, i = 0,1,---,m are posynomial functions, g;, j =
1,2,--,p are monomial functions, and & is the optimization
variable.

While GP in standard form is not a convex optimization prob-
lem, GP can be converted into the convex optimization problem
with a logarithm change of the variables and multiplicative con-
stants, and a logarithm transformation of the objective and con-
straint functions [6].

B. Transformation Into Geometric Programming

We need to transform the proposed optimization problem into
GP in standard form to obtain a solution to the proposed op-
timization problem (12). To satisfy the condition on the GP
in standard form, we make some manipulation of the objective
function in (12). Maximizing the objective function expressed
as the sum of log, (1+SINR) in (12) is equivalent to minimizing
the product of 1/(1 + SINR). Thus, we can convert the prob-
lem that maximizes the objective function into the equivalent
one which minimizes the product of 1/(1 + SINR). However,
the form of 1/(1 + SINR) is a ratio of two posynomials and
minimizing a ratio of two posynomials is one of the truly non-
convex class of problems [7]. To solve this problem, two suc-
cessive approximation methods, i.e., a logarithmic approxima-
tion method and a single condensation method, were introduced
in [8], and hence we use these two successive approximation
methods along with high SINR approximation as follows:

1) High SINR approximation for GP

If SINR is much greater than one, log,(1 + SINR) can be
approximated to log, (SINR). Therefore, 1/(1+ SINR) can ap-
proximately be converted into 1/SINR and the objective func-
tion is no longer a ratio of two posynomials. However, this ap-
proximation is reasonable only when the signal level is much
higher than the interference level.

2) Single condensation approximation method for GP [7]

To solve the problem that the objective function is a ratio
of two posynomials, we can employ the arithmetic-geometric
mean inequality method which can transform the posynomial
into the product of monomials. The arithmetic-geometric mean
inequality indicates that ) . a;b; > [[, b, where @ = 0, b0,
7@ = 1. Let g; = a;b; and then we can express this inequal-
ityas . g; > [[,(gi/a;)* . This inequality becomes tight with
equality, if a; = g;/ >, g; for all 4, which meet the condition
that @ = 0 and 7@ = 1.

3) Logarithmic approximation method for GP [9]
A non-convex problem involving log, (1 4+ SINR) can be ap-

proximated to x log,(SINR) + y for some constants  and y
satisfying the following conditions:

xlogy(2) +y < logy(1 + 2) (16)
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20
xTr =
14+ 2
logy (1 + 20) — —2— logy (z0)
=1lo 20) — 0g, (2
Y 23 0 1+ 2 g2(20

where the inequality becomes tight with equality at a chosen
value zy, when the constants x and y are determined as specified
above.

In the next subsection, we are going to select the most ap-
propriate approximation method for our proposed optimization
problem by comparing the results obtained from these three ap-
proximation methods.

C. Two-User Two-Subcarrier Example

Since the analytic comparison of the performance among
these approximation methods seems to be intractable, in this
paper we carry out a computer simulation under the same en-
vironment. The goal of the proposed optimization problem is to
maximize the total sum rate of the system. Therefore, from the
optimal point of view, it can be said that the method which yields
the largest sum rate under the same large-scale QoS and inter-
ference constraints is the most suitable method for the proposed
optimization problem. We compare the sum rates obtained from
three different approximation methods:

1) High SINR approximation
2) single condensation approximation
3) logarithmic approximation
for the simple two-user two-subcarrier example.

In this example, we assume that each SU has the maximum
transmit power 4W and the same minimum required SINR, 3 dB
at each subcarrier. The propagation model assumes the oper-
ation in a suburban environment and considers long-term fad-
ing (path loss and shadowing). Path loss exponent is set to 3.5
and shadowing for each SU is modeled as an independent log-
normal random variable with standard deviation 6 dB. The tol-
erable interference limit at the primary receiver is determined
to yield the desired SINR of 23 dB. To compare the sum rate
achieved from each approximation method, we generate 100 dif-
ferent shadowing realizations under the same large-scale QoS
and interference constraints with the fixed channel allocation
and positions of two users.

From Fig. 1, we can see that logarithmic and single con-
densation approximation methods always perform better than
high SINR approximation method in terms of the achieved sum
rate. However, since the two logarithmic and single condensa-
tion methods result in almost similar outcome with a slight dif-
ference, the performance of these two approximation methods
needs to be compared in detail, and we define a variable 6§ as

0= Slog - Ss.c (17)
where S}, indicates the total sum rate obtained from the loga-
rithmic approximation method and S . represents the total sum
rate achieved from the single condensation method.

In Fig. 2, we plot the instantaneous value of € obtained from
every trial as well as the average of 6 over all trials. We can
observe that not only the average of 6 is greater than zero but
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Nth shadowing

Fig. 1. Sum rates obtained from three different approximation methods.

also each value of 6 is greater than zero in most simulation tri-
als. Therefore, we could consider the logarithmic approxima-
tion method to be the most suitable for our proposed optimiza-
tion problem based on the simulation results obtained from this
two-user two-subcarrier example.

D. Transformation with Logarithmic Approximation

From the previous subsection, we verified that a logarithmic
approximation method is the most suitable for our proposed op-
timization problem. Therefore, we employ the logarithmic ap-
proximation method to transform the objective function in our
proposed optimization problem (12) into GP in standard form.
From the transformation process, an optimal solution can be ob-
tained by solving the following equivalent optimization problem
which is GP in standard form:

minimize H H H

m=1i= 1k€S,(m)

Ti(m), k2y1<m) k (18)
z(m),

subject to
Q%Yi(m),k _1
& ik Z > Ty aFim i
gm,i(m),k n=1l,n#m j
+ Xi(m),k p-1 NoB<1,
,(s) i(m),k
Zm 122 1Zk€sl(m) q,)(m) kP( ).k <1
BT, -
( Zzii‘i?)*l Z Py <1
kGSi(m)

where T;(m).x = ﬁi(m),k/(l + ﬁi(m),k) and Y;(m), 1 = logy (1 +
Bitm) k) = Fagmy o/ (1 + i) 1)) 1082 (Fi(my ). Values of
Ti(m),k and Y;(m),, are determined by the iterative method as
stated in [9].

A detailed procedure for transforming the optimization prob-
lem (12) into the equivalent one (18) can be found in the appen-
dix.
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Fig. 2. Sum rate difference between logarithmic approximation and sin-
gle condensation approximation methods.

Once the optimal solution is obtained from the optimization
problem (18), we proceed to the second sub-problem, outage
and violation events check problem. With the solution achieved
from the optimization problem, we can evaluate the outage and
violation probabilities to see if the obtained solution satisfies
both outage and violation probability constraints, (6) and (11),
respectively. If the obtained solution satisfies both outage and
violation constraints, it is determined as a final optimal solu-
tion; otherwise we need to solve the optimization problem (18)
again with newly updated « and (. The overall procedure will
be described in the next section.

V. LARGE-SCALE JOINT POWER AND RATE
ALLOCATION WITH ADMISSION CONTROL

In this section, we present the procedure of the proposed algo-
rithm to find a solution to the optimization problem (18) under
outage and violation probability constraints. Since the outage
and violation probabilities depend on the solutions of the op-
timization problem, we propose the iterative algorithm to find
out appropriate o and (3 factors and the corresponding optimal
solutions. The objective here is to maximize the total through-
put while satisfying users’ QoS requirements at each subcarrier.
However, since higher transmit power of one user increases in-
terference levels to other users, there may not be a feasible so-
lution to meet QoS requirements for all users under the inter-
ference constraints. For this reason, we incorporate admission
control into resource allocation algorithm such that QoS and in-
terference constraints can be satisfied simultaneously.
The proposed large-scale resource allocation algorithm com-
bined with admission control is designed as follows:
step 1: Initialize« = 1and g = 1.
step 2: Solve the large-scale optimization problem in (18) with
the current v and 3.

step 3: If a feasible solution satisfying both large-scale QoS
and interference constraints is obtained, compute and store
each user’s SINR based on the solution obtained by current
« and (3, and then go to step 4; otherwise go to step 6.
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step 4: Compute the outage and violation probabilities and
check whether they satisfy both outage and violation prob-
abilities constraints in (6) and (11), respectively. If the fea-
sible solution obtained from step 3 satisfies both outage and
violation constraints, finish and allocate obtained resources
to the users; otherwise go to step 5.

step 5: Update the conservative factors, o and 3 as follows:
if outage constraint in (6) is violated, &« = o + A«
if violation constraint in (11) is violated, 8 = 3 — AS
where A« and A are predetermined small adjustment val-
ues.
After updating v and (3, go back to step 2 with the updated
« and .

step 6: (Admission control) If a currently used « is 1, solve the
optimization problem in step 2 again without QoS constraint
(i.e. setting c to be zero) and calculate SINR to set a criterion
for the admission control; otherwise use the SINR measured
in step 3 as a criterion for the admission control.

step 7 : (Admission control) Perform the admission control to
prevent the worst user producing the lowest SINR of all users
and all subcarriers from using the corresponding subcarrier.
After step 7, return to step 2.

The process of estimating appropriate « and [ satisfying out-
age and violation probability constraints (i.e., step 4 and 5) does
not need to be done again as long as the given network condi-
tion and channel allocation do not change. Therefore, the pro-
posed algorithm can be implemented in two modes such as fun-
ing mode and blind mode. In a given network and channel allo-
cation, the proposed algorithm will do all steps (i.e., from step
1 to 7) during the runing mode. Through funing mode, we can
estimate the proper « and § and the corresponding solutions to
the optimization problem. For the blind mode, since the o and 8
obtained from funing mode can continuously be used (while the
given network condition and channel allocation do not change),
we are required to implement only several steps (i.e., step 2,
3, 6, and 7). Note that if outage and/or violation occur during
the blind mode, adaptive modulation and coding (AMC) may
be implemented to adjust the data rate for a given QoS at each
subcarrier.

VI. SIMULATION RESULTS

We evaluate the performance of the proposed algorithm in
IEEE 802.22 Wireless Regional Area Network (WRAN) which
is the first cognitive radios based wireless standard [10], [11].
We consider the co-existence scenario where one primary net-
work and two secondary network coexist. To obtain a protect
contour and keep-out region defined in [11], we assume that the
distance from a primary receiver to the BS in each secondary
network is 26 km and two cells are apart from each other with
the distance of 4 km. In each cell, one BS is located at the center
of the cell and three SUs are randomly generated at the edge of
the cell to make the sum interference to primary receiver severe.
The propagation model assumes the operation in a suburban en-
vironment and takes into consideration path loss and shadowing.
Path loss exponent is set to be 3.5 and shadowing for each SU
is modeled as an independent log-normal random variable with
standard deviation 6 dB and 8 dB. The ten-path Rayleigh fading
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:| = © - Resource allocation with the instantaneous channel
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35

Nth random shadowing

Fig. 3. Sum rate comparison of the proposed algorithm and instanta-
neous resource allocation method.

model is considered to simulate the frequency selective fading
channel. We consider OFDMA system with 12 subcarriers in to-
tal and 4 subcarriers are randomly allocated to each SU in each
cell. In each cell, subcarriers are assigned to SUs exclusively
so that there is no intra-cell interference. However, subcarriers
are shared among different cells and this will cause inter-cell in-
terference. The overall bandwidth is 0.36MHz (i.e., 3KHz per
sub-channel). We assume that all SUs have the same total trans-
mit power, 4W and the same minimum required SINR, 3 dB at
every subcarrier. Maximum outage and interference violation
probability is set to be 5% and 0.5%, respectively. The adjust-
ment values for conservative factors are empirically chosen to
be Aa = 1 and A = 0.05. The tolerable interference limit at
the primary receiver is determined to yield the desired SINR of
23 dB. To check whether the solutions obtained from the opti-
mization problem in (18) satisfy outage and violation probabili-
ties, we generate 10,000 different small-scale fading events.

A. Throughput Performance

To investigate the throughput performance of the proposed
algorithm, we compare the sum rate obtained from the pro-
posed algorithm to the one obtained from allocating resources
according to the instantaneous channel gains. We assume that
the frame length is on the order of 10 to 20 msec while the chan-
nel coherence time is typically on the order of 2.5 msec [12], in
which case small-scale fading changes 4 to 8 times every frame
transmission. Typically, large-scale fading changes once every
tens of frames, depending on the propagation environments, and
hence we assume that small-scale fading approximately changes
100 times per large-scale fading. The sum rate of the instanta-
neous resource allocation is obtained by taking the average of
data rates achieved from each trial.

In Fig. 3, we can see that the sum rate of the proposed al-
gorithm incurs about 2.64% of loss when it compares to the
sum rate of the instantaneous resource allocation. Since 5% out-
age probability is assumed in the proposed algorithm, it will
incur additional loss in the outage compared to the instanta-
neous resource allocation. However, the proposed algorithm
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Fig. 5. Outage probability for shadowing with standard deviation 8 dB.

still achieves 1/100 times less frequent power adaptation with a
slight loss in sum rate. Also, the simulation results show that the
proposed algorithm is not sensitive to the ratio factor between
large-scale and small-scale fading as long as it ranges from 10
to 1000.

B. Sensitivity of o and 3 to the Variations in Shadowing

To investigate whether the achieved « and /3 are sensitive to
variations in shadowing, we simulate the outage and violation
probabilities with the different shadowing whose standard devi-
ation is 6 dB and 8 dB, respectively. In Figs. 4-7, we present the
computed outage probability and violation probability with stan-
dard deviation 6 dB and 8 dB, respectively. From the simulation
results, when estimated o« = 4 and # = 0.6, we can observe
that every outcome of all trials satisfies both maximum outage
and violation probabilities in both cases where the standard de-
viation of shadowing is 6 dB and 8 dB, respectively. Therefore,
by estimating proper « and ( during the training mode, the esti-
mated « and 3 can reliably be used during the blind mode even
with slight variations in shadowing, so that we do not need to
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estimate « and 3 frequently, resulting in reduced overhead.

VII. CONCLUSION

We have proposed a framework for dynamic spectrum shar-
ing between primary and secondary networks. To overcome
the complexity problem caused by tracking the channel gains
instantaneously, the proposed algorithm allocates resources to
users on a large-scale while satisfying both large-scale QoS and
interference constraints under the constraints on the outage and
violation probabilities. Introducing two conservative factors «
and 3 makes it possible for the system to implement more flexi-
ble power allocation over conventional one, leading to a practi-
cal and implementation-friendly resource allocation for CRNs.
As the large-scale fading changes less, the effectiveness of the
proposed algorithm becomes better. Therefore, the proposed al-
gorithm could be suitable for the IEEE 802.22 WRAN where
customer premises equipments (which referred to as users in this
paper) are considered to be fixed terminals. Further extension of
the proposed algorithm to ad-hoc based CRNs and considering
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user-based fairness in the optimization problem are worth purs-
ing.

APPENDIX

By logarithmic approximation (16), the objective function in
(12) can be expressed as:
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Bitm)k) = Bigm) e/ (1 i) 1)) 1082 (Fimy k)
We assume that the bandwidth of all subcarriers is the same,

i.e., a constant value By = B, and log,(z) is an increasing
function with value of x > 1. Therefore, with the approximated
objective function in (19), the optimization problem (12) can be
formulated as:
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To satisfy the condition on the objective function of GP in
standard form, the optimization problem stated (20) can be
transformed into the equivalent problem which is GP in stan-
dard form:
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