• Title/Summary/Keyword: radio resource allocation

Search Result 158, Processing Time 0.024 seconds

Multiple-Phase Energy Detection and Effective Capacity Based Resource Allocation Against Primary User Emulation Attacks in Cognitive Radio Networks

  • Liu, Zongyi;Zhang, Guomei;Meng, Wei;Ma, Xiaohui;Li, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1313-1336
    • /
    • 2020
  • Cognitive radio (CR) is regarded as an effective approach to avoid the inefficient use of spectrum. However, CRNs have more special security problems compared with the traditional wireless communication systems due to its open and dynamic characteristics. Primary user emulation attack (PUEA) is a common method which can hinder secondary users (SUs) from accessing the spectrum by transmitting signals who has the similar characteristics of the primary users' (PUs) signals, and then the SUs' quality of service (QoS) cannot be guaranteed. To handle this issue, we first design a multiple-phase energy detection scheme based on the cooperation of multiple SUs to detect the PUEA more precisely. Second, a joint SUs scheduling and power allocation scheme is proposed to maximize the weighted effective capacity of multiple SUs with a constraint of the average interference to the PU. The simulation results show that the proposed method can effectively improve the effective capacity of the secondary users compared with the traditional overlay scheme which cannot be aware of the existence of PUEA. Also the good delay QoS guarantee for the secondary users is provided.

An Opportunistic Subchannel Allocation Scheme in Relay-based Marine Communication Networks (릴레이 기반의 해양 통신 시스템에서 기회주의적 서브채널 할당 기법)

  • Lee, Deokhui;Lee, Seong Ro;So, Jaewoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.546-551
    • /
    • 2014
  • This paper proposes an opportunistic subchannel allocation (OSA) scheme for relay-based marine communication networks to improve a sum-rate capacity. In most previous works for relay-based networks, each RS delivers the data received from the BS immediately to the corresponding ships in each frame. The achievable data-rate of the two-hop transmission (BS-RS and RS-ship links) is thus limited by the channel quality between BS-RS and RS-ship links. Hence, the radio resources can be wasted according to the difference in the channel quality between the BS-RS link and the RS-ship link. The proposed OSA scheme reduces the waste of radio resources by efficiently and independently allocating the radio resources at the BS-RS link and at the RS-ship link according to the channel quality of each link. The proposed OSA scheme, however, increases the computational complexity, because the BS finds the optimal OFDMA resource by checking the channel quality of all BS-RS links and RS-ship links. The simulation results show that the sum-rate capacity of the proposed OSA scheme improves maximum 14.0% compared with the conventional scheme.

Method for Supporting Multiple Service in a Mobile Terminal (이동 단말기에서 다중 서비스 지원 방안)

  • Lee, Jong-Chan;Park, Sang-Joon;Lee, Jin-Kwan
    • Convergence Security Journal
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2008
  • Our paper deals with a method for supporting multiple call/sessions in a mobile terminal. The different identifier for each protocol layer is assigned to each session when a mobile terminal sets SDP for multimedia services. In particular, QoS based tasks are used for managing the traffics in radio interface. Also, queuing, admission control, load control, resource allocation and scheduling are done based on the priority of sessions. The various multimedia services which is different in the requirement of resource allocation are able to be serviced simultaneously because a mobile terminal can provide the various services based on this scheme.

  • PDF

A Device-to-device Sharing-Resource Allocation Scheme based on Adaptive Group-wise Subset Reuse in OFDMA Cellular Network (OFDMA 셀룰러 네트워크에서 적응적인 Group-wise Subset Reuse 기반 Device-to-device 공유 자원 할당 기법)

  • Kim, Ji-Eun;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.72-79
    • /
    • 2010
  • Device-to-device(D2D) links which share resources in a cellular network present a challenge in radio resource management due to the potentially severe interference they may cause to the cellular network. In this paper, a resource allocation scheme based on subset reuse methods is proposed to minimize the interference from the D2D links. We consider an adaptive group-wise subset reuse method to enhance the efficiency of frequency resource allocation for cellular and D2D links. A power optimization scheme is also proposed for D2D links if cellular links are interfered by adjacent D2D transmissions. The computer simulation results show that performance gain is obtained in link SINR, and total cell throughput increases as nearby traffic becomes more dominant.

A Resource Allocation Method for Supporting Multiple Sessions in a Mobile Terminal during Handover (핸드오버 시 이동 단말기에서 다중 세션 지원을 위한 자원 할당 방안)

  • Lee, Moon-Ho;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.57-66
    • /
    • 2012
  • LTE-Advanced network will form the high-speed IP backbone in collaboration with heterogeneous radio access networks for dynamic optimized resource utilization. In order to implement more innovative and attractive services such as U-Cloud streaming, LBS and mobile smart TV, a mobile terminal needs to support multiple sessions simultaneously. Efficient resource allocation schemes are necessary to maintain QoS of multiple sessions because service continuity may be defected by delay and information loss during handover. This paper proposes a resource allocation scheme to accommodate multiple sessions in a mobile terminal on handover period based on session priority mechanism. Simulation is focused on the forced termination probability of handover sessions. Simulation results show that our proposed method provides a better performance than the conventional method.

Survey of Artificial Intelligence Approaches in Cognitive Radio Networks

  • Morabit, Yasmina EL;Mrabti, Fatiha;Abarkan, El Houssein
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.21-40
    • /
    • 2019
  • This paper presents a comprehensive survey of various artificial intelligence (AI) techniques implemented in cognitive radio engine to improve cognition capability in cognitive radio networks (CRNs). AI enables systems to solve problems by emulating human biological processes such as learning, reasoning, decision making, self-adaptation, self-organization, and self-stability. The use of AI techniques is studied in applications related to the major tasks of cognitive radio including spectrum sensing, spectrum sharing, spectrum mobility, and decision making regarding dynamic spectrum access, resource allocation, parameter adaptation, and optimization problem. The aim is to provide a single source as a survey paper to help researchers better understand the various implementations of AI approaches to different cognitive radio designs, as well as to refer interested readers to the recent AI research works done in CRNs.

Throughput Maximization by Efficient Subcarrier Allocation in an OFDMA-based CR Network (OFDMA 기반 CR 네트워크에서 효율적인 부반송파 할당을 통한 시스템 용량 극대화 방안)

  • Park, Jae-Hyun;Yoo, Jung-Min;Kim, Duk-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.179-187
    • /
    • 2011
  • Recently, cognitive radio attracts lots of interest to effectively utilize the limited spectral resource. In the previous researches, we proposed a method to enhance the system capacity of the overall network by using Selfish Symbiotic architecture and Non-selfish Symbiotic architecture. In this research, we further enhance the previous works to OFDM-based CR networks by using efficient subchannel allocation. The system performance is evaluated through intensive simulations with multiple primary users as well as a single primary user with different numbers of CR users.

MIMO Techniques for Green Radio Guaranteeing QoS

  • Nicolaou, Marios;Han, Congzheng;Beh, Kian Chung;Armour, Simon;Doufexi, Angela
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.130-139
    • /
    • 2010
  • Environmental issues and the need to reduce energy consumption for lowering operating costs have pushed power efficiency to become one of the major issues of current research in the field of wireless networks. This paper addresses a number of multiple input multiple output (MIMO) precoding and scheduling techniques across the PHY and MAC layers that can operate under a reduced link budget and collectively improve the transmit power efficiency of a base station, while maintaining the same levels of service. Different MIMO transmission and precoding schemes proposed for LTE, achieving varying degrees of multiuser diversity in both the time, frequency as well as the space domain, are examined. Several fairness-aware resource allocation algorithms are applied to the considered MIMO schemes and a detailed analysis of the tradeoffs between power efficiency and quality of service is presented. This paper explicitly examines the performance of a system serving real-time, VoIP traffic under different traffic loading conditions and transmit power levels. It is demonstrated that by use of efficient scheduling and resource allocation techniques significant savings in terms of consumed energy can be achieved, without compromising QoS.

Orthogonal Code Sharing and Radio Resource Allocation in Multibeam Satellite Communication Systems (다중빔 위성 통신 시스템에서 빔간 직교 코드 공유 기법과 동적 무선 자원 할당)

  • Lim, Kwang-Jae;Kim, Soo-Young;Oh, Deok-Gil;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.140-150
    • /
    • 2003
  • In this paper, we propose a novel code sharing method for downlink transmission of mobile satellite communication systems using a multibeam geosynchronous-orbit satellite. In the proposed system, spreading codes are shared among downlink beams in order to increase the system capacity. We also propose efficient radio resource and transmit power allocation schemes for the proposed system. Simplified analysis and simulation results on the system capacity show the capacity improvement by the proposed scheme. The simulation results show that the capacity of the proposed system is more than 2 times as large as that of a conventional multibeam satellite system. In the frequency-selective fading channel, the capacity improvement increases as the interference between orthogonal spreading codes decrease.

RRM Optimization for the Throughput Enhancement of WiFi AP (WiFi AP 성능 향상을 위한 무선 자원 관리 최적화)

  • Jeong, Kil Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.131-136
    • /
    • 2012
  • In these days, with the diffusion of mobile equipments, the number of WiFi Access Point (AP) is increasing, and the growth of WiFi AP causes the throughput degradation due to interferences between APs. This recent phenomenon demands the method able to be utilized with current WiFi network to improve the throughput of Wireless LANs. This paper studied the channel assignment method and several throughput enhancement methods to optimize Radio Resource Management (RRM) for distributed infrastructure WLANs. As a result, it was able to put AP independently, improve older allocation error, and improve execution speed.