• Title/Summary/Keyword: radio noise

Search Result 723, Processing Time 0.024 seconds

A 3.1 to 5 GHz CMOS Transceiver for DS-UWB Systems

  • Park, Bong-Hyuk;Lee, Kyung-Ai;Hong, Song-Cheol;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.421-429
    • /
    • 2007
  • This paper presents a direct-conversion CMOS transceiver for fully digital DS-UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase-locked loop (PLL), and a voltage controlled oscillator (VCO). A single-ended-to-differential converter is implemented in the down-conversion mixer and a differential-to-single-ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 $mm^2$ die using standard 0.18 ${\mu}m$ CMOS technology and a 64-pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low-power, and high-speed wireless personal area network.

  • PDF

SPATIO-SPECTRAL MAXIMUM ENTROPY METHOD: II. SOLAR MICROWAVE IMAGING SPECTROSCOPY

  • Bong, Su-Chan;Lee, Jeong-Woo;Gary Dale E.;Yun Hong-Sik;Chae Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.445-462
    • /
    • 2005
  • In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.

Design of RF Energy Detector for Spectrum Sensing in TV White Space Transceiver (TV White Space 송수신기의 스펙트럼 센싱을 위한 RF 에너지 검출 회로 설계)

  • Kim, Jong-Sik;Shin, Hyun-Chol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.83-91
    • /
    • 2012
  • An RF energy detector for spectrum sensing in TV white space transceiver is presented. It is based on an RF active filtering technique that comprises a low-noise amplifier with a frequency-translation high-pass filtering feedfoward loop, which attenuates the unwanted sideband energy and only passes the wanted band energy. Unlike the conventional architecture, a new architecture that can attenuate both sidebands at the same time is proposed. A simplified system modeling method is presented to assess the non-ideality effects on the RF energy detector performances. System behavioral simulations demonstrate that the proposed architecture can be instrumental for realizaing a RF energy detector circuit in CMOS.

A New Blind Beamforming Procedure Based on the Conjugate Gradient Method for CDMA Mobile Communications

  • Shin, Eung-Soon;Choi, Seung-Won;Shim, Dong-Hee;Kyeong, Mun-Geon;Chang, Kyung-Hi;Park, Youn-Ok;Han, Ki-Chul;Lee, Chung-Kun
    • ETRI Journal
    • /
    • v.20 no.2
    • /
    • pp.133-148
    • /
    • 1998
  • The objective of this paper is to present an adaptive algorithm for computing the weight vector which provides a beam pattern having its maximum gain along the direction of the mobile target signal source in the presence of interfering signals within a cell. The conjugate gradient method (CGM) is modified in such a way that the suboptimal weight vector is produced with the computational load of O(16N), which has been found to be small enough for the real-time processing of signals in most land mobile communications with the digital signal processor (DSP) off the shelf, where N denotes the number of antenna elements of the array. The adaptive procedure proposed in this paper is applied to code division multiple access (CDMA) mobile communication system to show its excellent performance in terms of signal to interference plus noise ratio (SINR), bit error rate (BER), and capacity, which are enhanced by about 7 dB, ${\frac{1}{100}}$ times, and 7 times, respectively, when the number of antenna elements is 6 and the processing gain is 20 dB.

  • PDF

TRAO Outer Galaxy Surey in $^{13}CO$ I

  • Lee, Young-Ung;Kim, Young-Sik;Kang, Hyun-Woo;Jung, Jae-Hoon;Kim, Hyun-Goo;Lee, Chang-Hoon;Yim, In-Sung;Kim, Bong-Gyu;Kim, Kwang-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • We present a result of $^{13}CO$(1-0) survey toward the Outer Galactic Plane using the multi-beam receiver system recently installed on the 14 m telescope at Taeduk Radio Astronomy Observatory(TRAO). Our first target region is from $l=108^{\circ}$ to $113^{\circ}$ and $b=-1^{\circ}$ to $+1^{\circ}$, and some extended regions are included where emission is still arising. All data are on 50" grid. Velocity resolution is 0.63 km/sec, and the total velocity range is from -150 km/sec to 100 km/sec. A total of 40,000 spectra were obtained. The rms noise is about 0.2 K per channel for unsmoothed raw data. We will present a few initial results of the survey database.

  • PDF

Statistical study of turbulence from polarized synchrotron emission

  • Lee, Hyeseung;Cho, Chungyeon;Lazarian, Alexandre
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2017
  • When turbulent motions perturb magnetic field lines and produce magnetic fluctuations, the perturbations leave imprints of turbulence statistics on magnetic field. Observation of synchrotron radiation is one of the easiest ways to study turbulent magnetic field. Therefore, we study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence, using both synthetic and MHD turbulence simulation data. First, we obtain the spatial spectrum and its derivative with respect to wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation. The study of spatial spectrum shows how the spectrum is affected by Faraday rotation and how we can recover the statistics of underlying turbulent magnetic field as well as turbulent density of electrons from interferometric observations that incorporate the effects of noise and finite telescopic beam size. Second, we study quadrupole ratio to quantitatively describe the degree of anisotropy introduced by magnetic field in the presence of MHD turbulence. We consider the case that the synchrotron emission and Faraday rotation are spatially separated, as well as the situation that the sources of the synchrotron radiation and thermal electrons causing Faraday rotation exist in the same region. In this study, we demonstrate that the spectrum and quadrupole ratio of synchrotron polarization can be very informative tools to get detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization.

  • PDF

Performance Improvement of CCA Blind Equalization Algorithm by Adaptive Step Size (적응 스텝 크기에 의한 CCA 블라인드 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.109-114
    • /
    • 2016
  • This paper relates with the performance improvement of CCA (Compact Constellation Algorithm) equalization algorithm by adding the adaptive step size control in order to the minimization of intersymbol interference and additive noise effects that is occurs in the channel for digital radio transmissionl. In general, the fixed step size was used in order to adaptation in equalizer algorithm. But in proposed algorithm, the variable step size were adapted that is proposional to the nonlinear function of error signal for equalization. In order to show the improved equalizatation performance, the output signal constellation of equalizer, residual isi, maximum distortion, MSE and SER were used, then it were compared with the present CCA algorithm. As a result of computer simulation, the adaptive step size CCA has more better performance in the every performance index compared to the fixed step size CCA after in the steay state.

Performance Analysis of Carrier Recovery for OFDM/QPSK-DMR System Using Band Limited-Pulse Shaping Filter (대역 제한 필터를 적용하는 OFDM/QPSK-DMR 시스템에 대한 Carrier Recovery의 성능 분석)

  • Ahn, Jun-Bae;Yang, Hee-Jin;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.403-406
    • /
    • 2003
  • In this paper, we have proposed a carrier recovery algorithm of OFDM/QPSK-DMR(Orthogonal Frequency Division Multiplexing/Quadrature Phase Shift Keying Modulation-Digital Microwave Radio)system using BL-PSF(Band Limited-Pulse Shaping Filter) and have analyzed the carrier phase MSE(Mean Square Error) performance of OFDM/QPSK and single carrier DMR systems. The existing OFDM/QPSK-DMR system using windowing requires training sequence or CP(Cyclic prefix) to synchronize a receive. carrier frequency. Because in the OFDM/QPSK-DMR system using BL-PSF there is no training sequence or CP(Cyclic Prefix), we also propose a carrier recovery useful to the system. The simulation results confirm that the proposed carrier recovery algorithm has the same carrier phase MSE(Mean Square Error) performance for the single carrier DMR system under AWGN(Additive White Gaussian Noise) environment.

  • PDF

Performance Analysis of Clock Recovery for OFDM/QPSK-DMR System Using Band Limited-Pulse Shaping Filter (대역 제한 필터를 적용하는 OFDM/QPSK-DMR 시스템에 대한 Clock Recovery의 성능 분석)

  • Ahn, Jun-Bae;Yang, Hee-Jin;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.394-397
    • /
    • 2003
  • In this paper, we have proposed a clock recovery algorithm of OFDM/QPSK-DMR(Orthogonal Frequency Division Multiplexing/Quadrature Phase Shift Keying Modulation-Digital Microwave Radio)system using BL-PSF(Band Limited-Pulse Shaping Filter) and have analyzed the clock phase error variance performance of OFDM/QPSK and single carrier DMR systems. The existing OFDM/QPSK-DMR system using the windowing requires training sequence or CP(Cyclic Prefix) to synchronize a receiver clock frequency Because there is no training sequence or CP(Cyclic prefix) in our proposed DMR system, the proposed clock recovery algorithm is useful to the OFDM/QPSK-DMR system using BL-PSF, The simulation results confirm that the proposed clock recovery algorithm has the same clock phase error variance performance in a single carrier DMR system under AWGN(Additive White Gaussian Noise) environment.

  • PDF

Performance Analysis of OFDM/QPSK-DMR System Using Band-limited Pulse Shaping Filter over the Microwave Channel (Microwave 채널 환경에서 대역 제한 필터를 적용하는 OFDM/QPSK-DMR 시스템의 성능 분석)

  • Ahn, Jun-Bae;Yang, Hee-Jin;Oh, Chang-Heon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.384-388
    • /
    • 2003
  • In this paper, we have proposed a OFDM/QPSK-DMR(Orthogonal frequency Division Multiplexing/Quadrature Phase Shift Keying Modulation-Digital Microwave Radio)system using BL-PSF(Band-limited pulse shaping filter) over the Microwave channel. In the proposed DMR system, STS-1(51.84 Mbps) of SONET(Synchronous Optical NETwork) is first modulated by OFDM/QPSK symbol and used Band-limited pulse shaping filter. The advantage of the proposed DMR system is to simplify system complexity and increase IFFT/FFT block use-efficiency. The system performance of single carrier and OFDM systems is already proved that those of DMR systems have the same performance over AWGN(Additive White Gaussian Noise) channel environment. Therefore, the system is analyzed between proposed OFDM/QPSK-DMR and single carrier DMR systems and simulated by BER performance and Signature curve over Microwave channel environment. Simulation result is that the proposed system performances are approaching to the performance of single carrier DMR system as the number of Sub-carriers increasing.

  • PDF