• Title/Summary/Keyword: radio frequency resonator

Search Result 80, Processing Time 0.034 seconds

A Frequency Tunable Double Band-Stop Resonator with Voltage Control by Varactor Diodes

  • Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.159-163
    • /
    • 2016
  • In this paper, a frequency tunable double band-stop resonator (BSR) with voltage control by varactor diodes is suggested. It makes use of a half-wavelength shunt stub as its conventional basic structure, which is replaced by the distributed LC block. Taking advantage of the nonlinear relationship between the frequency and electrical length of the distributed LC block, a dual-band device can be designed easily. With two varactor diodes, the stop-band of the resonator can be easily tuned by controlling the electrical length of the resonator structure. The measurement results show the tuning ranges of the two operating frequencies to be 1.82 GHz to 2.03 GHz and 2.81 GHz to 3.03 GHz, respectively. The entire size of the resonator is $10mm{\times}11mm$, which is very compact.

A RF Resonator Using Square SRR at 3 T MRI (3 T 자기공명영상시스템에서의 SRR을 이용한 RF 공진기)

  • Son, Hyeok-Woo;Cho, Young-Ki;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.280-283
    • /
    • 2015
  • This paper demonstrates a new radio frequency (RF) resonator at 3 T magnetic resonance imaging (MRI) system. An approach based on a split ring resonator (SRR) having effective metamaterial properties is investigated. Electromagnetic simulation results are compared for RF resonators and discussed in detail at 3 T. A new RF resonator has approximately 10% higher magnetic fields at the center of the human phantom than the previous RF resonator.

A 5-GHz Oscillator Using Frequency-Locked Loop with a Single Resonator (단일-공진기로 구성된 주파수-잠금 회로를 이용한 5-GHz 발진기)

  • Lee, Chang-Dae;Lee, Dong-Hyun;Lee, Chang-Hwan;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.842-850
    • /
    • 2018
  • In this paper, the design and fabrication of a frequency-locked-loop(FLL) 5-GHz oscillator with a single resonator is presented. The proposed oscillator is the simplified version of the previous FLL oscillator with two separate resonators in the VCO and frequency detector. The resonator is commonly used in the VCO and frequency detector of the proposed oscillator configuration. The 5-GHz oscillator is implemented on the hetero-multilayer substrate composed of a Rogers' RO4350B laminate, which has excellent high-frequency performance, and the commercial FR4 three-layer substrate. The frequency locking occurs at approximately 5 GHz and has an output power of 3.8 dBm. The phase noise has a free-run VCO phase noise at frequencies above 1 kHz, and an FLL background noise at frequencies below 1 kHz. For this loop-filter, the phase noise showed an improvement of approximately 12 dB at the offset-frequency of 100 Hz.

Design of Push-Push Oscillator Improving Coupling Characteristics of Resonators (공진기의 결합 특성을 개선한 Push-Push 발진기 설계)

  • Do, Ji-Hoon;Kim, Dae-Ung;Kim, Dae-Hui;Yun, Ho-Seok;Kang, Dong-Jin;Hong, Ui-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.241-247
    • /
    • 2007
  • This paper introduces a new type push-push harmonic dielectric resonator oscillator. Proposed oscillators are utilized by HDRO(Harmonic Dielectric Resonator Oscillator) which are combined in push-push structure. As a result, fundamental signal suppression ratio and output power of harmonic signal has been improved. The increase of phase noise is compensated by improving coupling characteristic between resonator and parallel microstrip line. The proposed push-push HDRO shows the output power of 9.32 dBm, the fundamental signal suppression of -47.2 dBc and phase noise of -99.86 dBc at 100 kHz offset frequency and 18.7 GHz center frequency.

Low Phase Noise VCO Using Complimentary Bifilar Archimedean Spiral Resonator(CBASR) (Complimentary Bifilar Archimedean Spiral Resonator(CBASR)를 이용한 저위상 잡음 전압 제어 발진기)

  • Lee, Hun-Sung;Yoon, Won-Sang;Lee, Kyoung-Ju;Han, Sang-Min;Pyo, Seong-Min;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.627-634
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator(VCO) using the complimentary bifilar archimedean spiral resonator(CBASR) is presented for reducing the phase noise characteristic. A CBASR has compact dimension, a sharp skirt characteristic in stopband, a low insertion loss in passband, and a large coupling coefficient value, which makes a high Q value and improve the phase noise of VCO. The proposed VCO has the oscillation frequency of 2.396~2.502 GHz in the tuning voltage of 0~5 V, the output power of 7.5 dBm and phase noise of -119.16~-120.2 dBc/㎐ at the offset frequency of 100 kHz in tuning range.

Design of Parallel Feedback Dielectric Resonator Oscillator(DRO) for the Suppression of the Harmonic (고조파 억압 특성을 개선한 병렬 궤환형 유전체 공진기 발진기 설계)

  • Ko, Jung-Pil;Lee, Kun-Joon;Kim, Young-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.145-149
    • /
    • 2003
  • The parallel feedback dielectric resonator oscillator (DRO) which is applicable to satellite communications and broadcasting has been investigated. In the design of oscillator, the phase noise is important parameter. In this paper, The proposed oscillator has good phase noise level because it suppressed harmonics. Measurement show the fabricated oscillator is output power of about 9 dBm at fundamental frequency of 12.0 GHz and fundamental frequency suppression of -47.5 dBc. The phase noise level is about -110 dBc/Hz at 100 KHz offset frequency.

  • PDF

The Slab Waveguide $CO_2$ Laser with Unstable Resonator of Negative Branch (Negative branch의 불안정 공진기를 갖는 슬랩형 도파관 $CO_2$ 레이저)

  • 김규식;우삼용;이영우;최종운
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.586-591
    • /
    • 2003
  • We have developed the radio frequency excited slab waveguide $CO_2$ laser, The dimension of active area is $2{\times}40{\times}400$ mm to get a laser gain. Two pieces of concave mirror are used to make the unstable resonator of negative branch. The radio frequency is 123 MHz and RF input power is from 100 to 900 W. The laser gas is set to a pressure of 10 ∼ 60 torr and the mixing ration is $CO_2$:$N_2$:He=1:1:3. The laser output power of 50.9 W was obtained with laser power to RF power efficiency of 6.5 %.

Simplified Modeling of Ring Resonators and Split Ring Resonators Using Magnetization

  • Jeon, Dongho;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.134-136
    • /
    • 2013
  • This paper examines various aspects of the electromagnetic responses of the ring resonator located in the transverse electromagnetic cell. In addition, an equivalent circuit for the ring resonator is proposed and analyzed based on the electromagnetic phenomenon of the resonator. The equivalent circuit was simply modeled based on the concept of magnetization. A method for achieving a wider operating bandwidth of the negative permeability is provided. The ring resonator with its resonant frequency of 13.56 MHz was designed and its characteristics were examined in terms of S-parameters, effective permeability, loss rate, bandwidth, etc. The circuit and electromagnetic simulation results show an excellent agreement as well as that of theory.

Characteristics of Isolator for material parameter (페라이트 소재변수에 따른 아이솔레이터 특성 연구)

  • Jun, Dong-Suk;Lee, Hong-Yeol;Kim, Dong-Young;Lee, Sang-Seak
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.119-122
    • /
    • 2003
  • This paper describes characteristics for insertion losses of Isolator have an effect on material parameter. One purpose of the paper is to present insertion loss on this resonator for magnetic loss, dielectric loss, magnetic field and saturation magnetization. Another is to study the effect of propeller resonator on response characteristics. In this paper, the analysis and measurement of the response characteristics were carried out for the isolator prototype. The measurement results agreed on the simulation results and acquire insertion loss $0.18\;{\sim}\;0.24dB$, return loss 27dB, isolation 27dB and bandwidth 500MHz on this condition saturation magnetization 550G, dielectric loss 0.0004, magnetic loss 20 and dielectric constant 14.

  • PDF

Compact 4-bit Chipless RFID Tag Using Modified ELC Resonator and Multiple Slot Resonators (변형된 ELC 공진기와 다중 슬롯 공진기를 이용한 소형 4-비트 Chipless RFID 태그 )

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.516-521
    • /
    • 2022
  • In this paper, a compact 4-bit chipless RFID(radio frequency identification) tag using a modified ELC(electric field-coupled inductive-capacitive) resonator and multiple slot resonators is proposed. The modified ELC resonator uses an interdigital-capacitor structure in the conventional ELC resonator to lower the resonance peak frequency of the RCS. The multiple slot resonators are designed by etching three slots with different lengths into an inverted U-shaped conductor. The resonant peak frequency of the RCS for the modified ELC resonator is 3.216 GHz, whereas those of the multiple slot resonators are set at 4.122 GHz, 4.64 GHz, and 5.304 GHz, respectively. The proposed compact four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. Experiment results show that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.285 GHz, 4.09 GHz, 4.63 GHz, and 5.31 GHz, respectively, which is similar to the simulation results with errors in the range between 0.78% and 2.16%.