DOI QR코드

DOI QR Code

Low Phase Noise VCO Using Complimentary Bifilar Archimedean Spiral Resonator(CBASR)

Complimentary Bifilar Archimedean Spiral Resonator(CBASR)를 이용한 저위상 잡음 전압 제어 발진기

  • Lee, Hun-Sung (Department of Computer and Radio Communications Engineering, Korea University) ;
  • Yoon, Won-Sang (Department of Computer and Radio Communications Engineering, Korea University) ;
  • Lee, Kyoung-Ju (Department of Computer and Radio Communications Engineering, Korea University) ;
  • Han, Sang-Min (Department of Information & Communication Engineering, Soonchunhyang University) ;
  • Pyo, Seong-Min (Department of Computer and Radio Communications Engineering, Korea University) ;
  • Kim, Young-Sik (Department of Computer and Radio Communications Engineering, Korea University)
  • 이훈성 (고려대학교 컴퓨터전파통신공학과) ;
  • 윤원상 (고려대학교 컴퓨터전파통신공학과) ;
  • 이경주 (고려대학교 컴퓨터전파통신공학과) ;
  • 한상민 (순천향대학교 정보통신공학과) ;
  • 표성민 (고려대학교 컴퓨터전파통신공학과) ;
  • 김영식 (고려대학교 컴퓨터전파통신공학과)
  • Accepted : 2010.05.06
  • Published : 2010.06.30

Abstract

In this paper, a novel voltage-controlled oscillator(VCO) using the complimentary bifilar archimedean spiral resonator(CBASR) is presented for reducing the phase noise characteristic. A CBASR has compact dimension, a sharp skirt characteristic in stopband, a low insertion loss in passband, and a large coupling coefficient value, which makes a high Q value and improve the phase noise of VCO. The proposed VCO has the oscillation frequency of 2.396~2.502 GHz in the tuning voltage of 0~5 V, the output power of 7.5 dBm and phase noise of -119.16~-120.2 dBc/㎐ at the offset frequency of 100 kHz in tuning range.

본 논문에서는 complimentary bifilar archimedean spiral resonator(CBASR)를 이용하여 저위상 잡음 특성을 갖는 새로운 구조의 전압 제어 발진기를 제안하였다. CBASR은 작은 면적, 저지대역에서 날카로운 스커트 특성과 통과대역에서 낮은 삽입 손실, 큰 결합 계수 값을 나타내며, 이로 인해 높은 Q값을 구현할 수 있는 장점이 있다. 따라서, 본 논문에서는 CBASR을 공진 회로로 사용하여 전압 제어 발진기의 위상 잡음을 개선시켰다. 제안된 전압 제어 발진기의 주파수 조절 범위는 제어 전압 0~5 V에서 2.396~2.502 GHz이며, 출력은 7.5 dBm, 그리고 위상 잡음 특성은 100 kHz offset에서 -119.16~-120.2 dBc/Hz이다.

Keywords

References

  1. D. B. Lesson, "A simple model of feedback oscillator noise spectrum", Proc. IEEE, vol. 54, no. 2, pp. 426-434, Feb. 1966. https://doi.org/10.1109/PROC.1966.4734
  2. C. Caloz, T. Itoh, Electriomagnetic Metamaterial: Transmission Line Theory and Microwave Applications, 1st Ed. Hoboken, NJ: Wiley, 2006.
  3. J. Choi, C. Seo, "Microstrip square open-loop multiple split-ring resonator for low phase noise VCO", IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3245-3252, Dec. 2008. https://doi.org/10.1109/TMTT.2008.2007363
  4. Z. Jiang, P. S. Excell, and Z. M. Hejazi, "Calculation of distributed capacitance of spiral resonators", IEEE Trans. Microw. Theory Tech., vol. 45, no. 1, pp. 139-142, Jan. 1997. https://doi.org/10.1109/22.552045
  5. O. Isik, K. P. Esselle, "Backward wave microstrip lines with complementary spiral resonators", IEEE Trans. Antennas Propag., vol. 56, no. 10, pp. 3173-3178, Oct. 2008. https://doi.org/10.1109/TAP.2008.929441
  6. I. Gil, J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "Left-handed and right-handed transmission properties of microstrip lines loaded with complementary split rings resonators", Microwave and Opt. Tech. Lett., vol. 48, no. 12, pp. 2508-2511, Dec. 2006. https://doi.org/10.1002/mop.22011
  7. M. Gil, J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "Broadband resonant-type metamaterial transmission lines", IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 97-99, Feb. 2007. https://doi.org/10.1109/LMWC.2006.890327
  8. J. D. Baena, J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorollar, "Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines", IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1451-1461, Apr. 2005. https://doi.org/10.1109/TMTT.2005.845211
  9. D. M. Pozar, Microwave Engineering, 3rd Ed. Hoboken, NJ: Wiley, 2005.

Cited by

  1. Design of Voltage Controlled Oscillator for X-band Radar Using CSRR loaded microstrip line vol.8, pp.9, 2013, https://doi.org/10.13067/JKIECS.2013.8.9.1277