• 제목/요약/키워드: radio access technology

검색결과 260건 처리시간 0.026초

Wireless LAN Security Solutions for Secure Wireless Communications

  • Kim, Su-Yong;Ahn, Duck-Ki;Roh, Jae-Sung;Oh, Chang-Reon;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • 제1권4호
    • /
    • pp.183-188
    • /
    • 2003
  • The $4^{th}$ generation mobile communications, through several radio access networks such as WLAN, Bluetooth, UMTS, GPRS, CDMA 1X, and IMT-2000 in the same area offering different type of coverage, will support interactive multimedia services in additions to wider bandwidths, higher bit rates, and service portability. Regardless of various radio access networks, they will also support robust security mechanisms, as well as seamless mobility and common authentication. In this paper, we give an overview of WLAN security and examine its security problems. We also explain the enhanced security schemes, such as port-based authentication, EAP, and IEEE 802.1X. For secure wireless communications, several possible security solutions are offered and evaluated in various respects to improve WLAN security. This paper will make a contribution to provide more secure wireless communications to cellular operators embracing WLAN technology as a means to generate new revenues based on data services.

Sampling Jitter Effect on a Reconfigurable Digital IF Transceiver to WiMAX and HSDPA

  • Yu, Bong-Guk;Lee, Jae-Kwon;Kim, Jin-Up;Lim, Kyu-Tae
    • ETRI Journal
    • /
    • 제33권3호
    • /
    • pp.326-334
    • /
    • 2011
  • This paper outlines the time jitter effect of a sampling clock on a software-defined radio technology-based digital intermediate frequency (IF) transceiver for a mobile communication base station. The implemented digital IF transceiver is reconfigurable to high-speed data packet access (HSDPA) and three bandwidth profiles: 1.75 MHz, 3.5 MHz, and 7 MHz, each incorporating the IEEE 802.16d worldwide interoperability for microwave access (WiMAX) standard. This paper examines the relationship between the signal-to-noise ratio (SNR) characteristics of a digital IF transceiver with an under-sampling scheme and the sampling jitter effect on a multichannel orthogonal frequency-division multiplexing (OFDM) signal. The simulation and experimental results show that the SNR of the OFDM system with narrower band profiles is more susceptible to sampling clock jitter than systems with relatively wider band profiles. Further, for systems with a comparable bandwidth, HSDPA outperforms WiMAX, for example, a 5 dB error vector magnitude improvement at 15 picoseconds time jitter for a bandwidth of WiMAX 3.5 MHz profile.

Dynamic Spectrum Load Balancing for Cognitive Radio in Frequency Domain and Time Domain

  • ;손성환;;김재명
    • 한국ITS학회 논문지
    • /
    • 제8권3호
    • /
    • pp.71-82
    • /
    • 2009
  • As a solution to spectrum under-utilization problem, Cognitive radio (CR) introduces a dynamic spectrum access technology. In the area, one of the most important problems is how secondary users (SUs) should choose between the available channels, which means how to achieve load balancing between channels. We consider spectrum load balancing problem for CR system in frequency domain and especially in time domain. Our objective is to balance the load among the channels and balance the occupied time length of slots for a fixed channel dynamically in order to obtain a user-optimal solution. In frequency domain, we refer to Dynamic Noncooperative Scheme with Communication (DNCOOPC) used in distributed system and a distributed Dynamic Spectrum Load Balancing algorithm (DSLB) is formed based on DNCOOPC. In time domain, Spectrum Load Balancing method with QoS support is proposed based on Dynamic Feed Back theory and Hash Table (SLBDH). The performance of DSLB and SLBDH are evaluated. In frequency domain, DSLB is more efficient compared with existing Compare_And_Balance (CAB) algorithm and gets more throughput compared with Spectrum Load Balancing (SLB) algorithm. Also, DSLB is a fair scheme for all devices. In time domain, SLBDH is an efficient and precise solution compared with Spectrum Load Smoothing (SLS) method.

  • PDF

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

미국의 전파 정책 및 전략 계획 (Spectrum Policy and Strategic Plan in the United States of America)

  • 김창주
    • 한국전자파학회논문지
    • /
    • 제23권8호
    • /
    • pp.853-860
    • /
    • 2012
  • 본고에서는 미국의 전파 정책 및 이용 전략을 분석하고, 이를 토대로 시사점을 제시한다. 먼저 전파기술의 발전과 함께 시장기반의 전파 정책과 주파수 공동사용 정책의 탄생 등 전파 정책의 패러다임 변화를 살펴본다. 또한, 전파자원에 대한 수요가 급증하는 정보화 사회에서 미국의 전파 이용 전략을 분석하고, 이의 시사점을 도출한다. 특히, 주파수 이용 효율을 향상시키기 위하여 dynamic spectrum access 기술의 적극 개발 및 테스트베드 구축을 통하여 이의 실현 가능성을 실험하는 중장기 이용전략을 중점적으로 검토한다. 끝으로 모바일 중심의 wireless broadband 사회를 맞이하여 National Broadband Plan에 따른 주파수 재배치에 대한 검토와 시사점을 다룬다.

Novel Multiple Access Schemes for IEEE 802.15.4a Low-rate Ultra-wide Band Systems

  • 휘빙;장홍;장경희
    • 한국통신학회논문지
    • /
    • 제35권7A호
    • /
    • pp.682-687
    • /
    • 2010
  • The IEEE 802.15.4a specification targets the low-rate (LR) Impulse-radio (IR) ultra-wideband (UWB) system which is now widely applied in the WPANs considering rather short distance communications with low complexity and power consumption. The physical (PHY) layer uses concatenated coding with mixed binary phase-shift keying and binary pulse-position modulation (BPSK-BPPM), and direct sequence spreading with time hopping in order that both coherent and non-coherent receiver architectures are supported. In this paper, the performances of multiple access schemes compliant with IEEE 802.15.4a specification are investigated with energy detection receiver, which allow avoiding the complex channel estimation needed by a coherent receiver. However, the performance of energy detection receiver is severely degraded by multi-user interference (MUI), which largely diminishes one of the most fascinating advantages of UWB, namely robustness to MUI as well as the possibility to allow parallel transmissions. So as to improve the performance of multiple access schemes, we propose to apply the novel TH sequences as well as to increase the number of TH positions. The simulation results show that our novel multiple access schemes significantly improve the performance against MUI.

Stochastic MAC-layer Interference Model for Opportunistic Spectrum Access: A Weighted Graphical Game Approach

  • Zhao, Qian;Shen, Liang;Ding, Cheng
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.411-419
    • /
    • 2016
  • This article investigates the problem of distributed channel selection in opportunistic spectrum access networks from a perspective of interference minimization. The traditional physical (PHY)-layer interference model is for information theoretic analysis. When practical multiple access mechanisms are considered, the recently developed binary medium access control (MAC)-layer interference model in the previous work is more useful, in which the experienced interference of a user is defined as the number of competing users. However, the binary model is not accurate in mathematics analysis with poor achievable performance. Therefore, we propose a real-valued one called stochastic MAC-layer interference model, where the utility of a player is defined as a function of the aggregate weight of the stochastic interference of competing neighbors. Then, the distributed channel selection problem in the stochastic MAC-layer interference model is formulated as a weighted stochastic MAC-layer interference minimization game and we proved that the game is an exact potential game which exists one pure strategy Nash equilibrium point at least. By using the proposed stochastic learning-automata based uncoupled algorithm with heterogeneous learning parameter (SLA-H), we can achieve suboptimal convergence averagely and this result can be verified in the simulation. Moreover, the simulated results also prove that the proposed stochastic model can achieve higher throughput performance and faster convergence behavior than the binary one.

Transport Protocols in Cognitive Radio Networks: A Survey

  • Zhong, Xiaoxiong;Qin, Yang;Li, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권11호
    • /
    • pp.3711-3730
    • /
    • 2014
  • Cognitive radio networks (CRNs) have emerged as a promising solution to enhance spectrum utilization by using unused or less used spectrum in radio environments. The basic idea of CRNs is to allow secondary users (SUs) access to licensed spectrum, under the condition that the interference perceived by the primary users (PUs) is minimal. In CRNs, the channel availability is uncertainty due to the existence of PUs, resulting in intermittent communication. Transmission control protocol (TCP) performance may significantly degrade in such conditions. To address the challenges, some transport protocols have been proposed for reliable transmission in CRNs. In this paper we survey the state-of-the-art transport protocols for CRNs. We firstly highlight the unique aspects of CRNs, and describe the challenges of transport protocols in terms of PU behavior, spectrum sensing, spectrum changing and TCP mechanism itself over CRNs. Then, we provide a summary and comparison of existing transport protocols for CRNs. Finally, we discuss several open issues and research challenges. To the best of our knowledge, our work is the first survey on transport protocols for CRNs.

A Distributed Multiple Spectrum Pricing Scheme for Optimality Support in Multiaccess Systems

  • Choi, Yong-Hoon;Sohaib, Khan;Kim, Hoon;Chang, Kap-Seok;Kang, Sung-Yeol;Han, Young-Nam
    • Journal of Communications and Networks
    • /
    • 제11권4호
    • /
    • pp.368-374
    • /
    • 2009
  • This paper focuses on a distributed multiple spectrum pricing scheme to maximize system capacity in next generation multiaccess systems, where multimode user equipments (MUEs) can connect simultaneously to multiple base stations (BSs) with multiple radio access technologies (RATs). The multi-price based scheme provides a distributed decision making for an optimal solution where radio resource allocations are determined by each MUE, unlike most centralized mechanisms where BS controls the whole radio resource. By the proposed optimal solution, MUEs can decide their share of spectrum bands and power allocation according to the spectrum price of each RAT, and at the same time the multiaccess system can achieve maximized total throughput. Numerical analysis shows that the proposed scheme achieves the maximal capacity by distributed resource allocation for the multiaccess system.

지능형 무선 인지 기술 기반 네트워크 환경에서 MAC 계층 동적 주파수 선택 방법 (Dynamic Frequency Selection Method for Medium Access Control in Cognitive Radio Networks)

  • 조경진;김현주;노권문;유상조
    • 한국통신학회논문지
    • /
    • 제31권7B호
    • /
    • pp.632-641
    • /
    • 2006
  • 최근 FCC에서는 허가된 무선 통신 시스템의 비어 있는 주파수에 대해 허가되지 않은 통신 시스템의 중복 사용에 대한 내용을 고려하고 있다. 하지만 허가된 시스템과 비허가 시스템의 공존으로 인해 기존의 허가된 무선 통신 사용자에게 유해한 간섭을 주어 심각한 통신 성능 저하를 초래할 우려가 있다. 이와 관련하여 본 논문에서는 우선 인지 기술(cognitive radio technology)을 기반으로 MAC(Medium Access Control) 계층에서의 동적 주파수 선택 방법에 대하여 제안한다. 동적 주파수 선택 방법은 기지국과 단말의 센싱을 통해 획득한 감지 정보를 바탕으로 비어 있는 주파수 대역을 검출하여 채널 리스트를 생성하고 허가된 무선 통신 시스템을 감지하면 능동적으로 사용 가능한 채널로 이동을 수행하는 방법으로, 이는 기존의 허가된 무선 통신 시스템에 간섭으로써 영향을 줄일 수 있는 동시에 비허가 시스템과 허가된 시스템의 공존을 가능하게 함으로써 채널의 효율성을 극대화시킬 수 있다.