• 제목/요약/키워드: radio access technology

검색결과 259건 처리시간 0.023초

A Reinforcement Learning Framework for Autonomous Cell Activation and Customized Energy-Efficient Resource Allocation in C-RANs

  • Sun, Guolin;Boateng, Gordon Owusu;Huang, Hu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.3821-3841
    • /
    • 2019
  • Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become imperative in designing new solutions. In this paper, we propose a generic framework of autonomous cell activation and customized physical resource allocation schemes for energy consumption and QoS optimization in wireless networks. We formulate the problem as fractional power control with bandwidth adaptation and full power control and bandwidth allocation models and set up a Q-learning model to satisfy the QoS requirements of users and to achieve low energy consumption with the minimum number of active RRHs under varying traffic demand and network densities. Extensive simulations are conducted to show the effectiveness of our proposed solution compared to existing schemes.

Joint resource optimization for nonorthogonal multiple access-enhanced scalable video coding multicast in unmanned aerial vehicle-assisted radio-access networks

  • Ziyuan Tong;Hang Shen;Ning Shi;Tianjing Wang;Guangwei Bai
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.874-886
    • /
    • 2023
  • A joint resource-optimization scheme is investigated for nonorthogonal multiple access (NOMA)-enhanced scalable video coding (SVC) multicast in unmanned aerial vehicle (UAV)-assisted radio-access networks (RANs). This scheme allows a ground base station and UAVs to simultaneously multicast successive video layers in SVC with successive interference cancellation in NOMA. A video quality-maximization problem is formulated as a mixed-integer nonlinear programming problem to determine the UAV deployment and association, RAN spectrum allocation for multicast groups, and UAV transmit power. The optimization problem is decoupled into the UAV deployment-association, spectrum-partition, and UAV transmit-power-control subproblems. A heuristic strategy is designed to determine the UAV deployment and association patterns. An upgraded knapsack algorithm is developed to solve spectrum partition, followed by fast UAV power fine-tuning to further boost the performance. The simulation results confirm that the proposed scheme improves the average peak signal-to-noise ratio, aggregate videoreception rate, and spectrum utilization over various baselines.

Performance Analysis of Amplify and Forward (AF)-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.223-228
    • /
    • 2013
  • Cognitive radio has been recently considered a promising technology to improve spectrum utilization by enabling secondary access to licensed bands that are not used by primary users temporarily or spatially. A prerequisite to this secondary access is the lack of interference to the primary system. This requirement makes spectrum sensing a key process for cognitive radio. In this study, we consider amplify and forward (AF)-based cooperative spectrum sensing for cognitive radio networks where multiple relay nodes are utilized to amplify and forward the primary user signal for better spectrum sensing, and maximum ratio combining is used for fusion detection by a cognitive coordinator. Further, the detection probability and the bit error rate of AF-based cooperative spectrum sensing are analyzed in fading multiple cognitive relay channels. The simulation results show that the AF-based cooperative spectrum sensing scheme outperforms the conventional scheme.

Domestic Radio Waves Propagate Management and Control Systems Investigate the System Status (주요선진국 전파관리제도와 국내 전파관리 제도에 대한 조사)

  • Kim, Sung-Hong;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2017
  • There propagate use management paradigm in developed countries is changing as Command & Control ${\Rightarrow}$ Market Based ${\Rightarrow}$ Open Access ${\Rightarrow}$ Manage By Technology & Technical Analysis, that the policy response to environmental changes, such as a variety of new technologies. The emergence of service, the proliferation of propagation users It is to activate the market. However, the basic principles of radio management such that the change of paradigm be used to spread in a range that does not affect the interference, such as the horn is to be observed. Around the world in order to prevent the propagation and utilization Horn interference enacted regulations for managing the radio station, and also discipline.

Holistic Joint Optimal Cooperative Spectrum Sensing and Transmission Based on Cooperative Communication in Cognitive Radio

  • Zhong, Weizhi;Chen, Kunqi;Liu, Xin;Zhou, Jianjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1301-1318
    • /
    • 2017
  • In order to utilize the licensed channel of cognitive radio (CR) when the primary user (PU) is detected busy, a benefit-exchange access mode based on cooperative communication is proposed to allow secondary user (SU) to access the busy channel through giving assistance to PU's communication in exchange for some transmission bandwidth. A holistic joint optimization problem is formulated to maximize the total throughput of CR system through jointly optimizing the parameters of cooperative spectrum sensing (CSS), including the local sensing time, the pre-configured sensing decision threshold, the forward power of cooperative communication, and the bandwidth and transmission power allocated to SUs in benefit-exchange access mode and traditional access mode, respectively. To solve this complex problem, a combination of bi-level optimization, interior-point optimization and exhaustive optimization is proposed. Simulation results show that, compared with the tradition throughput maximizing model (TTMM), the proposed holistic joint optimization model (HJOM) can make use of the channel effectively even if PU is busy, and the total throughput of CR obtains a considerable improvement by HJOM.

Performance Evaluation of the Common Channel Access Method in CDMA Packet Service System (CDMA 패킷 서비스 시스템에서 Common Channel Access 방법의 성능 평가)

  • Lee, Kang-Won
    • IE interfaces
    • /
    • 제17권3호
    • /
    • pp.294-304
    • /
    • 2004
  • In the IS-95 packet service system, the radio channels are generally classified into the dedicated and common traffic channels. In this paper, the performance of the common traffic channel access method is evaluated using simulation. The simulation results are compared with those of random access method. Simulation results show that the capacity can be increased up to 25% by applying the proposed common channel access method. The delay problem and variance of BER are also discussed.

An Approach to maximize throughput for Energy Efficient Cognitive Radio Networks

  • Ghosh, Jyotirmoy;Koo, Insoo
    • International Journal of Advanced Culture Technology
    • /
    • 제1권2호
    • /
    • pp.18-23
    • /
    • 2013
  • In this paper, we consider the problem of designing optimal sensing time and the minimization of energy consumption in the Cognitive radio Network. Trade-off between throughput and the sensing time are observed, and the equations are derived for the optimal choice of design variables. In this paper, we also look at the optimization problem involving all the design parameters together. The advantages of the proposed scheme for the spectrum sensing and access process are shown through simulation.

  • PDF

Short Term Spectrum Trading in Future LTE Based Cognitive Radio Systems

  • Singh, Hiran Kumar;Kumar, Dhananjay;Srilakshmi, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.34-49
    • /
    • 2015
  • Market means of spectrum trading have been utilized as a vital method of spectrum sharing and access in future cognitive radio system. In this paper, we consider the spectrum trading with multiple primary carrier providers (PCP) leasing the spectrum to multiple secondary carrier providers (SCP) for a short period of time. Several factors including the price of the resource, duration of leasing, and the spectrum quality guides the proposed model. We formulate three trading policies based on the game theory for dynamic spectrum access in a LTE based cognitive radio system (CRS). In the first, we consider utility function based resource sharing (UFRS) without any knowledge of past transaction. In the second policy, each SCP deals with PCP using a non-cooperative resource sharing (NCRS) method which employs optimal strategy based on reinforcement learning. In variation of second policy, third policy adopts a Nash bargaining while incorporating a recommendation entity in resource sharing (RERS). The simulation results suggest overall increase in throughput while maintaining higher spectrum efficiency and fairness.

Learning Automata Based Multipath Multicasting in Cognitive Radio Networks

  • Ali, Asad;Qadir, Junaid;Baig, Adeel
    • Journal of Communications and Networks
    • /
    • 제17권4호
    • /
    • pp.406-418
    • /
    • 2015
  • Cognitive radio networks (CRNs) have emerged as a promising solution to the problem of spectrum under utilization and artificial radio spectrum scarcity. The paradigm of dynamic spectrum access allows a secondary network comprising of secondary users (SUs) to coexist with a primary network comprising of licensed primary users (PUs) subject to the condition that SUs do not cause any interference to the primary network. Since it is necessary for SUs to avoid any interference to the primary network, PU activity precludes attempts of SUs to access the licensed spectrum and forces frequent channel switching for SUs. This dynamic nature of CRNs, coupled with the possibility that an SU may not share a common channel with all its neighbors, makes the task of multicast routing especially challenging. In this work, we have proposed a novel multipath on-demand multicast routing protocol for CRNs. The approach of multipath routing, although commonly used in unicast routing, has not been explored for multicasting earlier. Motivated by the fact that CRNs have highly dynamic conditions, whose parameters are often unknown, the multicast routing problem is modeled in the reinforcement learning based framework of learning automata. Simulation results demonstrate that the approach of multipath multicasting is feasible, with our proposed protocol showing a superior performance to a baseline state-of-the-art CRN multicasting protocol.

Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE (WiFi와 BLE 를 이용한 Log-Distance Path Loss Model 기반 Fingerprint Radio map 알고리즘)

  • Seong, Ju-Hyeon;Gwun, Teak-Gu;Lee, Seung-Hee;Kim, Jeong-Woo;Seo, Dong-hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.62-68
    • /
    • 2016
  • The fingerprint, which is one of the methods of indoor localization using WiFi, has been frequently studied because of its ability to be implemented via wireless access points. This method has low positioning resolution and high computational complexity compared to other methods, caused by its dependence of reference points in the radio map. In order to compensate for these problems, this paper presents a radio map designed algorithm based on the log-distance path loss model fusing a WiFi and BLE fingerprint. The proposed algorithm designs a radio map with variable values using the log-distance path loss model and reduces distance errors using a median filter. The experimental results of the proposed algorithm, compared with existing fingerprinting methods, show that the accuracy of positioning improved by from 2.747 m to 2.112 m, and the computational complexity reduced by a minimum of 33% according to the access points.