DOI QR코드

DOI QR Code

Joint resource optimization for nonorthogonal multiple access-enhanced scalable video coding multicast in unmanned aerial vehicle-assisted radio-access networks

  • Ziyuan Tong (College of Computer Science and Technology, Nanjing Tech University) ;
  • Hang Shen (College of Computer Science and Technology, Nanjing Tech University) ;
  • Ning Shi (Nanjing Trusted Blockchain and Algorithm Economics Institute) ;
  • Tianjing Wang (College of Computer Science and Technology, Nanjing Tech University) ;
  • Guangwei Bai (College of Computer Science and Technology, Nanjing Tech University)
  • Received : 2022.04.06
  • Accepted : 2022.06.23
  • Published : 2023.10.20

Abstract

A joint resource-optimization scheme is investigated for nonorthogonal multiple access (NOMA)-enhanced scalable video coding (SVC) multicast in unmanned aerial vehicle (UAV)-assisted radio-access networks (RANs). This scheme allows a ground base station and UAVs to simultaneously multicast successive video layers in SVC with successive interference cancellation in NOMA. A video quality-maximization problem is formulated as a mixed-integer nonlinear programming problem to determine the UAV deployment and association, RAN spectrum allocation for multicast groups, and UAV transmit power. The optimization problem is decoupled into the UAV deployment-association, spectrum-partition, and UAV transmit-power-control subproblems. A heuristic strategy is designed to determine the UAV deployment and association patterns. An upgraded knapsack algorithm is developed to solve spectrum partition, followed by fast UAV power fine-tuning to further boost the performance. The simulation results confirm that the proposed scheme improves the average peak signal-to-noise ratio, aggregate videoreception rate, and spectrum utilization over various baselines.

Keywords

Acknowledgement

National Natural Science Foundation of China under Grants 61502230 and 61501224, the National Project Funding for Key R&D Programs under Grant 2018YFC0808500, the Natural Science Foundation of Jiangsu Province under Grant BK20201357, and the Six Talent Peaks Project in Jiangsu Province under Grant RJFW-020.

References

  1. I.-S. Coms,a, G.-M. Muntean, and R. Trestian, An innovative machine-learning-based scheduling solution for improving live UHD video streaming quality in highly dynamic network environments, IEEE Trans. Broadcast. 67 (2021), no. 1, 212-224. https://doi.org/10.1109/TBC.2020.2983298
  2. M. Ghermezcheshmeh, V. Shah-Mansouri, and M. Ghanbari, Analysis and performance evaluation of scalable video coding over heterogeneous cellular networks, Comput. Netw. 148 (2019), 151-163. https://doi.org/10.1016/j.comnet.2018.10.020
  3. H. Zhu, Y. Cao, T. Jiang, and Q. Zhang, Scalable NOMA multicast for SVC streams in cellular networks, IEEE Trans. Commun. 66 (2018), no. 12, 6339-6352. https://doi.org/10.1109/TCOMM.2018.2865938
  4. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, and Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends, IEEE Commun. Mag. 53 (2015), no. 9, 74-81. https://doi.org/10.1109/MCOM.2015.7263349
  5. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks, IEEE Commun. Mag. 55 (2017), no. 2, 185-191. https://doi.org/10.1109/MCOM.2017.1500657CM
  6. M. Zhang, H. Lu, F. Wu, and C. W. Chen, NOMA-based scalable video multicast in mobile networks with statistical channels, IEEE Trans. Mobile Comput. 20 (2021), no. 6, 2238-2253. https://doi.org/10.1109/TMC.2020.2977639
  7. H. Shen, Q. Ye, W. Zhuang, W. Shi, G. Bai, and G. Yang, Drone-small-cell-assisted resource slicing for 5G uplink radio access networks, IEEE Trans. Veh. Technol. 70 (2021), no. 7, 7071-7086. https://doi.org/10.1109/TVT.2021.3083255
  8. N. Zhao, F. R. Yu, L. Fan, Y. Chen, J. Tang, A. Nallanathan, and V. C. M. Leung, Caching unmanned aerial vehicle-enabled small-cell networks: employing energy-efficient methods that store and retrieve popular content, IEEE Veh. Technol. Mag. 14 (2019), no. 1, 71-79. https://doi.org/10.1109/MVT.2018.2881228
  9. S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, Powerdomain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges, IEEE Commun. Surveys Tuts. 19 (2017), no. 2, 721-742. https://doi.org/10.1109/COMST.2016.2621116
  10. A. A. Khuwaja, Y. Chen, N. Zhao, M.-S. Alouini, and P. Dobbins, A survey of channel modeling for UAV communications, IEEE Commun. Surveys Tuts. 20 (2018), no. 4, 2804-2821. https://doi.org/10.1109/COMST.2018.2856587
  11. Y. Wu, L. P. Qian, H. Mao, X. Yang, H. Zhou, and X. Shen, Optimal power allocation and scheduling for non-orthogonal multiple access relay-assisted networks, IEEE Trans. Mobile Comput. 17 (2018), no. 11, 2591-2606.
  12. G. Liu, Z. Wang, J. Hu, Z. Ding, and P. Fan, Cooperative NOMA broadcasting/multicasting for low-latency and highreliability 5G cellular V2X communications, IEEE Internet Things J. 6 (2019), no. 5, 7828-7838.
  13. S. Ahn, S.-I. Park, J.-Y. Lee, N. Hur, and J. Kang, Cooperation between ldm-based terrestrial broadcast and broadband unicast: on scalable video streaming applications, IEEE Trans. Broadcast. 67 (2021), no. 1, 2-22. https://doi.org/10.1109/TBC.2020.3028331
  14. H. Zhou, Y. Ji, X. Wang, and B. Zhao, Joint resource allocation and user association for SVC multicast over heterogeneous cellular networks, IEEE Trans. Wireless Commun. 14 (2015), no. 7, 3673-3684. https://doi.org/10.1109/TWC.2015.2409834
  15. G. Araniti, F. Rinaldi, P. Scopelliti, A. Molinaro, and A. Iera, A dynamic MBSFN area formation algorithm for multicast service delivery in 5G NR networks, IEEE Trans. Wireless Commun. 19 (2020), no. 2, 808-821. https://doi.org/10.1109/TWC.2019.2948846
  16. X. Jiang, H. Lu, and C. W. Chen, Enabling quality-driven scalable video transmission over multi-user NOMA system, (IEEE INFOCOM - IEEE Conference on Computer Communications, Honolulu, HI, USA), Apr. 2018, pp. 1952-1960.
  17. S. Ahn, S.-I. Park, J.-Y. Lee, N. Hur, Y. Wu, L. Zhang, W. Li, and J. Kim, Large-scale network analysis on noma-aided broadcast/unicast joint transmission scenarios considering content popularity, IEEE Trans. Broadcast. 66 (2020), no. 4, 770-785. https://doi.org/10.1109/TBC.2020.2965062
  18. X. Pang, Z. Li, X. Chen, Y. Cao, N. Zhao, Y. Chen, and Z. Ding, UAV-aided NOMA networks with optimization of trajectory and precoding, (International Conference on Wireless Communications and Signal Processing, Hangzhou, China), Oct. 2018, pp. 1-6.
  19. P. X, J. Tang, N. Zhao, Z. X, and Q. Y, Energy-efficient design for mmwave-enabled noma-uav networks, Sci. China Inf. Sci. 64 (2021), no. 4, 14.
  20. M. D. Nguyen, L. Bao Le, and A. Girard, Trajectory control and resource allocation for UAV-based networks with wireless backhauls, (ICC-IEEE International Conference on Communications, Montreal, Canada), June 2021, pp. 1-6.
  21. D. Zhai, H. Li, X. Tang, R. Zhang, Z. Ding, and F. R. Yu, Height optimization and resource allocation for NOMA enhanced UAV-aided relay networks, IEEE Trans. Commun. 69 (2021), no. 2, 962-975. https://doi.org/10.1109/TCOMM.2020.3037345
  22. A. Farajzadeh, O. Ercetin, and H. Yanikomeroglu, UAV data collection over noma backscatter networks: UAV altitude and trajectory optimization, (ICC-IEEE International Conference on Communications, Shanghai, China), May 2019, pp. 1-7.
  23. W. Wang, J. Tang, N. Zhao, X. Liu, X. Y. Zhang, Y. Chen, and Y. Qian, Joint precoding optimization for secure SWIPT in UAV-aided NOMA networks, IEEE Trans. Commun. 68 (2020), no. 8, 5028-5040. https://doi.org/10.1109/TCOMM.2020.2990994
  24. M. S. Shokry, D. Ebrahimi, C. Assi, S. Sharafeddine, and A. Ghrayeb, Leveraging UAVs for coverage in cell-free vehicular networks: a deep reinforcement learning approach, IEEE Trans. Mobile Comput. 20 (2021), no. 9, 2835-2847. https://doi.org/10.1109/TMC.2020.2991326
  25. X. Hu, K.-K. Wong, and Y. Zhang, Wireless-powered edge computing with cooperative uav: task, time scheduling and trajectory design, IEEE Trans. Wireless Commu. 19 (2020), no. 12, 8083-8098. https://doi.org/10.1109/TWC.2020.3019097
  26. A. Al-Hourani, S. Kandeepan, and S. Lardner, Optimal LAP altitude for maximum coverage, IEEE Wireless Commun. Lett. 3 (2014), no. 6, 569-572. https://doi.org/10.1109/LWC.2014.2342736
  27. W. Shi, J. Li, W. Xu, H. Zhou, N. Zhang, S. Zhang, and X. Shen, Multiple drone-cell deployment analyses and optimization in drone assisted radio access networks, IEEE Access 6 (2018), 12518-12529. https://doi.org/10.1109/ACCESS.2018.2803788
  28. H. Qu, W. Zhang, J. Zhao, Z. Luan, and C. Chang, Rapid deployment of UAVs based on bandwidth resources in emergency scenarios, (Information Communication Technologies Conference, Nanjing, China), 2020, pp. 86-90.
  29. J. Lee, B. C. Yeo, J.-S. Kim, M. S. Jang, and J. K. Choi, Energy efficient scalable video coding based cooperative multicast scheme with selective layer forwarding, IEEE Wireless Commun. Lett. 17 (2013), no. 6, 1116-1119. https://doi.org/10.1109/LCOMM.2013.050313.130062
  30. I.-P. Belikaidis, A. Georgakopoulos, E. Kosmatos, V. Frascolla, and P. Demestichas, Management of 3.5-GHz spectrum in 5G dense networks: a hierarchical radio resource management scheme, IEEE Veh. Technol. Mag. 13 (2018), no. 2, 57-64.  https://doi.org/10.1109/MVT.2018.2814340