• Title/Summary/Keyword: radiative force

Search Result 9, Processing Time 0.027 seconds

A Study of Effect of the Radiative Heat Flux on the Evacuation of Agents (화재에 의해 발생하는 복사열이 재실자의 피난거동에 미치는 영향에 관한 연구)

  • Bae, Sungryong;Kim, Jung-Yup;Shin, Hyun-Joon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Recently, the safety assessments with using the various evacuation programs are performed for improving the performance of fire and evacuation safety in the building. Generally, the evacuation programs can simulate the human behavior in fire situation by applying the variation of the movement speed and Fractional Effective Dose (FED) index in the smoke. However, if the simulation is performed without optional setting around the fire, the agents do not avoid the fire and they move through the fire. Therefore in this study, we define the radiative repulsion force which exists between the fire and the agents. Moreover, we modify the Helbing's movement model by adding the radiative repulsion force. As a result of the modified movement model, all agents move around the fire and they do not enter the upper bound area of radiative heat flux, $2.4kW/m^2$. From these results, we verified the reliability of the modified movement model.

Multibubble Dynamics in an Acoustic Field: Theoretical Study and Direct Numerical Simulation by MTS-DiCUP

  • Ida M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.167-169
    • /
    • 2003
  • This paper presents a theoretical study concerning multibubble dynamics in a sound field and the numerical validation for it by employing our new CFD code MTS-DiCUP. In recent papers, the author has shown theoretically that an unknown characteristic frequency, named 'transition frequency,' exists in a multibubble system. For a N -bubble case, up to 2N -1 transition frequencies per bubble have been predicted, only N ones of them correspond to the natural frequencies of the system. The transition frequencies that do not correspond to the natural frequencies give rise to the phase reversal of bubbles' pulsation without resonant response. In this paper, it has been suggested theoretically that those transition frequencies may cause the sign reversal of the secondary Bjerknes force, which is an interaction force acting between acoustically coupled gas bubbles. This theoretical result has been validated by the direct numerical simulation, at least in a qualitative sense.

  • PDF

A study on the measurement of Radiative Heat flux form the flame(I) -Design and Calibration of a Heat flux meter- (화염으로부터의 복사 열유속의 계측 I)

  • 정종수;인종수;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.484-491
    • /
    • 1990
  • A heat-flux meter has been designed and manufactured to measure the heat flux from the flame. A calibration method of the heat-flux meter by a calibration furnace has also been proposed. The k-type (Chromel-Alumel) thermocouple material has been used as the material for the beat-flux meter. The electormotive force (e.m.f.) from the K-type thermocouple is shown to be linearly proportional to the heat flux absorbed. The characteristics of the heat-flux meter become better as the radius of heat absorbing disk becomes larger and its thickness thinner.

Earth Albedo perturbations on Low Earth Orbit Cubesats

  • Khalifa, N.S.;Sharaf-Eldin, T.E.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.193-199
    • /
    • 2013
  • This work investigates the orbital perturbations of the cubesats that lie on LEO due to Earth albedo. The motivation for this paper originated in the investigation of the orbital perturbations for closed- Earth pico-satellites due to the sunlight reflected by the Earth (the albedo). Having assumed that the Sun lies on the equator, the albedo irradiance is calculated using a numerical model in which irradiance depends on the geographical latitude, longitude and altitude of the satellite. However, in the present work the longitude dependency is disregarded. Albedo force and acceleration components are formulated using a detailed model in a geocentric equatorial system in which the Earth is an oblate spheroid. Lagrange planetary equations in its Gaussian form are used to analyze the orbital changes when $e{\neq}0$ and $i{\neq}0$. Based on the Earth's reflectivity data measured by NASA Total Ozone Mapping Spectrometer (TOMS project), the orbital perturbations are calculated for some cubesats. The outcome of the numerical test shows that the albedo force has a significant contribution on the orbital perturbations of the pico-satellite which can affect the satellite life time.

Discovery of a New Mechanism to Release Complex Molecules from Icy Grain Mantles around Young Stellar Objects

  • Hoang, Thiem;Tram, Le Ngoc
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.70.4-70.4
    • /
    • 2019
  • Complex organic molecules (COMs) are increasingly observed in the environs of young stellar objects (YSOs), including hot cores/corinos around high-mass/low-mass protostars and protoplanetary disks. It is widely believed that COMs are first formed in the ice mantle of dust grains and subsequently released to the gas by thermal sublimation at high temperatures (T>100 K) in strong stellar radiation fields. In this paper, we report a new mechanism that can desorb COMs from icy grain mantles at low temperatures (T<100K), which is termed rotational desorption. The rotational desorption process of COMs comprises two stages: (1) ice mantles on suprathermally rotating grains spun-up by radiative torques (RATs) are first disrupted into small fragments by centrifugal stress, and (2) COMs and water ice then evaporate rapidly from the tiny fragments (i.e., radius a <1nm) due to thermal spikes or enhanced thermal sublimation due to increased grain temperature for larger fragments (a>1 nm). We discuss the implications of rotational desorption for releasing COMs and water ice in the inner region of protostellar envelopes (hot cores and corinos), photodissociation regions, and protoplanetary disks (PPDs). In shocked regions of stellar outflows, we find that nanoparticles can be spun-up to suprathermal rotation due to supersonic drift of neutral gas, such that centrifugal force can be sufficient to directly eject some molecules from the grain surface, provided that nanoparticles are made of strong material. Finally, we find that large aggregates (a~ 1-100 micron) exposed to strong stellar radiations can be disrupted into individual icy grains via RAdiative Torque Disruption (RATD) mechanism, which is followed by rotational desorption of ice mantles and evaporation of COMs. In the RATD picture, we expect some correlation between the enhancement of COMs and the depletion of large dust grains in not very dense regions of YSOs.

  • PDF

Self-Regulation of Star Formation Rates: an Equilibrium Vieww

  • Kim, Chang-Goo;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2016
  • In this talk, I will present a theoretical and numerical framework for self-regulation of the star formation rates (SFRs) in disk galaxies. The theory assumes (1) force balance between pressure support and the weight of the interstellar medum (ISM), (2) thermal balance between radiative cooling in the ISM and heating via FUV radiation from massive young stars, and (3) turbulent energy balance between dissipation in the ISM and driving by momentum injection of SNe. Numerical simulations show vigorous dynamics in the ISM at all times, but with proper temporal and spatial averages, all the expected balances hold. This leads to a scaling relation between mean SFRs and galactic gas and stellar properties, arising from the fundamental relationship between SFR surface density and the total midplane pressure.

  • PDF

EUNHA: A NEW COSMOLOGICAL HYDRODYNAMIC SIMULATION CODE

  • Shin, Jihye;Kim, Juhan;Kim, Sungsoo S.;Park, Changbom
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.3
    • /
    • pp.87-98
    • /
    • 2014
  • We develop a parallel cosmological hydrodynamic simulation code designed for the study of formation and evolution of cosmological structures. The gravitational force is calculated using the TreePM method and the hydrodynamics is implemented based on the smoothed particle hydrodynamics. The initial displacement and velocity of simulation particles are calculated according to second-order Lagrangian perturbation theory using the power spectra of dark matter and baryonic matter. The initial background temperature is given by Recfast and the temperature uctuations at the initial particle position are assigned according to the adiabatic model. We use a time-limiter scheme over the individual time steps to capture shock-fronts and to ease the time-step tension between the shock and preshock particles. We also include the astrophysical gas processes of radiative heating/cooling, star formation, metal enrichment, and supernova feedback. We test the code in several standard cases such as one-dimensional Riemann problems, Kelvin-Helmholtz, and Sedov blast wave instability. Star formation on the galactic disk is investigated to check whether the Schmidt-Kennicutt relation is properly recovered. We also study global star formation history at different simulation resolutions and compare them with observations.

The Trade Regulation in the Multilateral Environmental Agreements on Climate Change (기후변화관련(氣候變化關聯) 국제환경협약체제하(國際環境協約體制下)의 무역규제조항(貿易規制條項))

  • Chung, Ye-Mo
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.14
    • /
    • pp.349-370
    • /
    • 2000
  • The environmental problems such as global climate change, global waming, ozone depletion, environmental pollution have been caused by the rapid economic growth, increasing in use of fossil fuels for industrialization and scientific technology development. Especially human activities are significantly altering the atomosphere's composition and its radiative properties. To Stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system, the international community adopted the UN Framework Convention on Climate Change in 1992 and Kyoto protocol in 1997. Also to protect ozone layer the international community adopted the Vienna Convention for the Protection of the Ozone Layer in 1985, and the Montreal Protocol on Substances that Deplete the Ozone Layer in 1987. To achieve global environmental objectives, some multilateral environmental agreements includes trade regulation. For example, Montreal Protocol includes the provisions to regulate the world trade of the sudstances which might destroy ozone layer. However Kyoto Protocol has no provisions to regulate trade and is not in force yet. Although there is no trade regulation article in Kyoto Protocol, the international world trade will be influenced by limitation and reduction of CO2 and strengthening the CO2 emission standard for import good. For example Korean car industy agreed with EU to reduce CO2 emission from new passenger car and Korean Semiconductor industry agreed with WSC(World Semiconductor Council) to reduce PFCs in 1999.

  • PDF

Fabrication and Characterization of InGaN/GaN LED structures grown on selectively wet-etched porous GaN template layer

  • Beck, Seol;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.124-124
    • /
    • 2010
  • Much interest has been focused on InGaN-based materials and their quantum structures due to their optoelectronics applications such as light emitting diode (LED) and photovoltaic devices, because of its high thermal conductivity, high optical efficiency, and direct wide band gap, in spite of their high density of threading dislocations. Build-in internal field-induced quantum-confined Stark effect in InGaN/GaN quantum well LED structures results in a spatial separation of electrons and holes, which leads to a reduction of radiative recombination rate. Therefore, many growth techniques have been developed by utilizing lateral over-growth mode or by inserting additional layers such as patterned layer and superlattices for reducing threading dislocations and internal fields. In this work, we investigated various characteristics of InGaN multiple quantum wells (MQWs) LED structures grown on selectively wet-etched porous (SWEP) GaN template layer and compared with those grown on non-porous GaN template layer over c-plane sapphire substrates. From the surface morphology measured by atomic force microscope, high resolution X-ray diffraction analysis, low temperature photoluminescence (PL) and PL excitation measurements, good structural and optical properties were observed on both LED structures. However, InGaN MQWs LED structures grown on SWEP GaN template layer show relatively low In composition, thin well width, and blue shift of PL spectra on MQW emission. These results were explained by rough surface of template layer, reduction of residual compressive stress, and less piezoelectric field on MQWs by utilizing SWEP GaN template layer. Better electrical properties were also observed for InGaN MQWs on SWEP GaN template layer, specially at reverse operating condition for I-V measurements.

  • PDF