• 제목/요약/키워드: radiation balance

Search Result 195, Processing Time 0.022 seconds

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

Running of high patient volume radiation oncology department during COVID-19 crisis in India: our institutional strategy

  • Gupta, Manoj;Ahuja, Rachit;Gupta, Sweety;Joseph, Deepa;Pasricha, Rajesh;Verma, Swati;Pandey, Laxman
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • Purpose: Due to COVID 19 pandemic, the treatment of cancer patients has become a dilemma for every oncologist. Cancer patients are at an increased risk of immunosuppression and have a higher risk to acquire any infection. There are individual experiences from some centers regarding the management of cancer patients during such a crisis. So we have developed our institutional strategy to balance between COVID and cancer management. Materials and Methods: Radiation Oncology departmental meeting was held to prepare a consensus document on Radiotherapy schedules and department functioning during this pandemic. Results: Strategies were taken in form of following areas were steps need to be taken to decrease risk of infection, categorise treatment on the basis of priority, radiotherapy schedules modification, academic meetings and management of COVID positive patient/personnel in Radiation Oncology department. Conclusion: We hope to strike the balance in overcoming both the battles and emerge as winners. Stringent long term follow up will be done for assessing the response or any unforeseen treatment related sequelae.

Study on Characteristics of Radiation Environment in the Urban through the Field Observation in the Summer (하절기 도시의 장.단파 복사특성 관측)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.105-110
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1) In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2) The upper part of atmosphere layers in the urban area absorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3) The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas.

  • PDF

Daily Variation of Heat Budget Balance in the Gangjeong-Goryung Reservoir for Summertime - Concerning around the Rate of Heat Storage - (낙동강 강정고령보의 여름철 열수지 일변화 - 열 저장량 변동을 중심으로 -)

  • Kim, Seong-Rak;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.721-729
    • /
    • 2015
  • Surface heat balance of the Gangjeong-Goryung Reservoir is analyzed for 12-17 August 2013. Each flux elements at the water surface is derived from the special field observations with application of an aerodynamical bulk method for the turbulent heat fluxes and empirical formulae for the radiation heat fluxes. The rate of heat storage in the reservoir is estimated by using estimated by surface heating rate and the vertical water temperature data. The flux divergence of heat transport is estimated as a residual. The features of the surface heat balance are almost decided by the latent heat flux and the solar radiation flux. On average for 12-17 August 2014 in the Gangjeong- Goryung Reservoir, if one defines the insolation at the water surface as 100 %, 94 % is absorbed in the reservoir; thereafter the reservoir loses about 30~50% by sensible heat, latent heat and net long-wave radiation. The residue of 50~80 % raises the water temperature in the reservoir or transported away by the river flow during the daytime.

The Acoustic Output Estimation for Therapeutic Ultrasound Equipment using Electro-Acoustic Radiation Conductance (전기-음향 방사컨덕턴스를 이용한 치료용 초음파 자극기의 음향출력 예측)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.264-269
    • /
    • 2011
  • To increase therapeutic efficiency and biological safety, it is important to precision control of acoustic output for therapeutic ultrasound equipment. In this paper, the electro-acoustic radiation conductance, one of electroacoustic characteristics of therapeutic ultrasound equipment, was measured by the radiation force balance method according to IEC 61161 standards and the acoustic output was estimated using the electro-acoustic radiation conductance. The estimation of acoustic output was conducted to continuous wave mode and pulse wave mode of duty cycle between 20% and 80%. The differences between prediction values and measurement results are within 5% of measurement uncertainty, which is a reasonably good agreement. The results show that acoustic output controlled by electro-acoustic radiation conductance was found to be an effective method.

Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season (하절기 도시의 지역별 장.단파복사 특성 분석과 해석)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.133-144
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1)In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2)The upper part of atmosphere layers in the urban are aabsorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3)The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and 1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas. (4)The net radiation of the rural was lower that of the urban. It was found that the energy in and outflow of the rural is easier than that of the urban. (5)The temperature variation for the long-wave radiation change of the rural showed more sensitive than that of the urban. It was came from the radiation characteristics of the surrounding environment and can be used as the important index to evaluate the thermal environment characteristic of urban.

Identification of Nonlinear Parameters of Electrodynamic Direct-Radiator Loudspeaker with Output Noise (출력 소음을 고려한 직접방사형 라우드스피커의 비선형 매개변수 규명)

  • 박석태;홍석윤
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.887-899
    • /
    • 1998
  • It has been resulted that Lagrange multiplier method with statistical approach was superior to traditional harmonic balance method in identifying the nonlinear loudspeaker parameters when output signals were contaminated with Gaussian random noise. We have known that the displacement-dependent characteristic values of nonlinear parameters identified by traditional harmonic balance method were estimated less than original values by the increase of output noise and the stiffness coefficients were very sensitive to output noise. Also, by the sensitivity analysis we have verified that the harmonic distortions in acoustic radiation was mainly due to nonlinearity of force factor caused by uneven magnetic fields and that reducing the nonlinearity of damping coefficients were very effective for improving second harmonic distrotion of acoustic radiation.

  • PDF

Seasonal Variation of the Surface Heat Budget in the Gumi Reservoir of Nakdong River (낙동강 구미 보의 수면 열수지 계절 변화)

  • Kim, Hak-Yun;Seo, Kwang-Su;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1057-1063
    • /
    • 2016
  • The heat budget is investigated in the Gumi Reservoir of the Nakdong river. In warm climate season, solar radiation effects play a important role in the change of water temperature. The features of the surface heat balance are almost derived by the latent heat flux and the solar radiation flux. On the other hand, in cold climate season, change of heat stored in the water is mainly dominated by latent and sensible heat transfer between water and air, since flux of solar radiation and loss of outgoing long wave radiation balance approximately. For the annual averages, net flux of radiation, evaporation(latent heat) loss are dominant in the Gumi reservoir. The evaporation losses are dominant from spring to early winter. This means that the Gumi reservoir rolls like a lake of thermal medium or deep depth.

Analysis of Passive Cooling Effect of Membrane Shading Structure and the Tree by Field Observations in the Summer (하절기 복사환경 관측을 통한 수목과 일사차폐 막 구조물의 자연냉각효과)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.137-146
    • /
    • 2007
  • This study is about the passive cooling effects of three outdoor solar shading facilities as trees, pergola with wistaria vine and membrane shading structure, which are expected to provide cool spots in the summer. Field observations of measuring thermal environment of selected facilities is executed. Thermal environment measuring was categorized as short wave radiation, long wave radiation, net radiation, globe temperature, surface temperature measured by infrared camera. Heat transfer mechanism is analyzed with overall data from field measurement. Results from this study are as below; 1) Radiation balance measured on shaded surface under membrane shading structure was 17%($86W/m^2$) of the unshaded surface radiation balance($511W/m^2$). 2) Surface temperature comparison between vegetation and membrane of the shading structure is performed at 3 o'clock in the afternoon. Surface temperature of vegetation was same as air temperature and that of membrane was $5^{\circ}C$ higher than air temperature. Vegetation transpiration is considered as the causing factor which make those differences. 3) Results from this study could be used as fundamental data for reducing heat island phenomena and continuos research on this subject would be needed.

On response of Surface Equilibrium Temperature for Change of Surface Characteristics : An EBM Study (지표 특성 변화에 대한 평형온도의 반응 연구 : EBM 연구)

  • Seo, Ye-Won;Chu, Jung-Eun;Ha, Kyung-Ja
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Energy Balance Model (EBM) was used to experiment the distribution of surface equilibrium temperature which responds to external forcing associated with the surface characteristics. Surface equilibrium temperature is calculated as sum of incoming solar radiation and latitudinal transport is balanced with outgoing infrared radiation. To treat incoming solar radiation, the source of the earth energy, significantly for energy balance, the experiment for surface equilibrium temperature distribution was performed considering the energy balance with the latitudinal albedo change as well as land and sea distribution. In addition, linear albedo change experiment, arctic albedo 5%, 10%, 15% change experiments and the opposite albedo change experiments between arctic and mid-latitudes were performed using incoming solar radiation as an external forcing. Moreover, with and without ice-albedo feedback experiments were performed. Increasing of arctic albedo is blocked out the incoming solar radiation so that it induces decreasing of latitudinal heat transport. It is strengthened energy transport from low latitudes by keeping arctic low energy states. Therefore the temperature change in the mid-latitudes exhibits larger response than that of arctic due to the difference of transport. The land which has lower heat capacity than sea can be reach to equilibrium temperature shortly. Also land is more sensitive to temperature change with respects to albedo. Thus it induces the thermal difference between land and sea. As a result, the equilibrium temperature exhibits differently as the difference of albedo and heat capacity which are the one of surface characteristics. Surface equilibrium temperature decreases as albedo increase and the ratio of temperature change is large as heat capacity is small. The decreasing of surface equilibrium temperature with respects to increasing of linear albedo is accelerated by ice-albedo feedback. However local change of surface equilibrium temperature decreases non-linearly.

  • PDF