• 제목/요약/키워드: radial efficiency

검색결과 335건 처리시간 0.03초

고압 다단 펌프의 레이디얼 디퓨저에 대한 연구 (Study on the Radial Diffuser of Multistage High Pressure Pump)

  • 김덕수;산자르;박원규
    • 대한기계학회논문집B
    • /
    • 제40권11호
    • /
    • pp.727-736
    • /
    • 2016
  • 본 연구에서는 복합화력 화력 발전소용 고압 다단펌프의 레이디얼 디퓨저 형상에 따른 펌프의 성능(양정, 효율)변화를 수치 해석적으로 분석하였다. 레이디얼 디퓨저 설계 변수는 크게 디퓨저 베인수, 디퓨저 외경비($D_4/D_3$), 리턴채널 출구각도(${\alpha}_6$), 압력회복계수($C_p$) 등으로 선정하였다. 수치해석 결과 디퓨저 외경비가 큰 경우 양정 및 효율이 가장 크게 예측되었으며, 리턴채널의 출구각도(${\alpha}_6$)가 60도인 경우 디퓨저 출구에서의 Pre-Swirl로 인해 출구각도가 90도인 것에 비해 양정이 저하되는 것을 알 수 있다.

R32를 이용한 100kW급 해양온도차발전용 반경류터빈의 설계 (Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32)

  • 김도엽;김유택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1101-1105
    • /
    • 2014
  • 해양온도차발전은 해양의 따뜻한 표층수와 차가운 심층수의 온도차를 발전에 이용하는 전도유망한 기술이다. 지속가능한 온도차를 이용하여 온실가스감축기술로서 활용할 수 있다는 장점을 가지는 반면, 시스템의 효율이 낮다는 단점을 가진다. 해양온도차발전의 낮은 시스템 효율을 개선하기 위해서는 성능이 우수한 터빈의 설계 및 개발기술의 확보가 필요하다. 이에 따라 본 연구에서는 R32를 이용한 100kW급 해양온도차발전용 반경류터빈을 설계하였으며, CFD 해석을 통해 설계한 터빈의 성능을 검증하였다. CFD 해석결과를 참고하여 설계한 반경류터빈의 형상을 수정하였으며 이러한 과정을 반복하여 설계요구조건에 적합한 해양온도차발전용 반경류터빈의 최종 형상을 도출하였다.

IPM type BLDC 전동기의 진동 및 소음 저감을 위한 가진력 평형화 설계 (The Design of Radial Magnetic Force Equilibrium for Reduction of Vibration and Noise in IPM Type BLDC Motor)

  • 정태석;조규원;김규탁
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1535-1540
    • /
    • 2013
  • In this paper, the Radial Magnetic Force(RMF) and cogging torque which cause vibration and noise in IPM type BLDC motor were analyzed. The cogging torque and RMF cause electromagnetic vibration. So, a notch was installed for the equilibrium of RMF and cogging torque reduction. The notch was analyzed by using a Fourier Series for the energy distribution of the air-gap. The equilibrium of RMF and the reduction of cogging torque were performed by a Design Of Experiment(DOE) with the notch. Also, operating characteristics and efficiency were analyzed and compared.

NACA 65-810 반경류 에어포일 임펠러의 성능특성 (Performance of NACA 65-810 Radial Airfoil Impellers)

  • 강신형;호생리
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.24-31
    • /
    • 1998
  • Aerodynamic performance tests and flow measurement were carried out for several radial impellers of NACA 65-810 airfoil. The data base obtained are to be used for verifying the methods of flow analysis and CFD codes. The effects of numbers and span of blades on the performances, efficiency and impeller exit flow are investigated in the present study. The flow rate on the performance curve is proportional to the span of the blade for the same value of fan pressure rise. The magnitude of radial velocity component at the impeller exit gradually decreases from the hub to shroud side. The magnitude of tangential velocity component gradually increases from the hub to shroud side. The way of variations of velocity is the same at the diffuser exit, however, becomes more uniform. The pressure rise performance increases with blade number at the small flow coefficients, however, decreases with the number of blade at the large flow coefficients. This shows that flow guidance in important at the low flow rate and the friction becomes significant at the high flow rate.

  • PDF

부상용 2극과 회전용 4극 자속 분포를 갖는 로렌쯔형 자기 부상 모터 (Lorentz Force Type Self-Bearing Motor with 2-Pole Flux Distribution for Levitation and 4-Pole for Rotation)

  • 김승종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.482-487
    • /
    • 2001
  • This paper introduces a Lorentz force type four-pole self-bearing motor, where the new pole arrangement of a stator is intended to function both as a synchronous PM motor and as a magnetic bearing. The Lorentz force type has some good points such as linearity of control force, freedom from flux saturation, and high efficiency unlike conventional self-bearing motors. Mathematical expressions of torque and radial force are derived to show that they can be separately controlled regardless of rotational speed and time. To verify the proposed theory, a prototype is made, where a ring-shape outer is actively controlled in two radial directions while the other motions are passively stable supposing the radial stability. Through some experiments, it is shown that the proposed scheme can provide high capability and feasibility for a small high-speed self-bearing motor.

  • PDF

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

Radial basis function collocation method for a rotating Bose-Einstein condensation with vortex lattices

  • Shih, Y.T.;Tsai, C.C.;Chen, K.T.
    • Interaction and multiscale mechanics
    • /
    • 제5권2호
    • /
    • pp.131-144
    • /
    • 2012
  • We study a radial basis function collocation method (RBFCM) to discretize a coupled nonlinear Schr$\ddot{o}$dinger equation (CNLSE) that governs a two dimensional rotating Bose-Einstein condensate (BEC) with an angular momentum rotation term. We exploit a RBFCM-continuation method (RBFCM-CM) to trace the solution curve of the CNLSE. We compare the performance of the RBFCM-CM with the FEM-CM. We observe that the RBFCM-CM is very robust in a coarse grid for resolving the ground state solution with many vortices when the angular momentum rotation is close to the limit. Numerical results demonstrate the efficiency and accuracy of the RBFCM-CM for computing the superfluid density of the ground level of the BEC.

반경방향 분사방식 프리스월 시스템의 프리스월 노즐과 리시버 홀의 상대적 위치에 따른 시스템 성능변화 (System Performance Variation for Relative Location of Pre-swirl Nozzles and Receiver Holes in Radial On-Board Injection Type Pre-swirl System)

  • 이종건;이현규;조건환;조진수
    • 한국항공우주학회지
    • /
    • 제48권1호
    • /
    • pp.43-53
    • /
    • 2020
  • 프리스월 노즐과 리시버 홀의 상대적 위치가 반경방향 분사방식 프리스월 시스템의 성능에 미치는 영향을 분석하였다. 본 연구에서는 5개의 프리스월 노즐 위치와 4개의 리시버 홀 위치 조합을 통해 20개의 설계점에 대한 분석을 진행하여 유량계수와 온도 강하 효율 변화 경향성을 연구하였다. 시스템 유량계수는 프리스월 노즐의 압력비와 비슷한 경향을 보였다. 캐비티 내부의 유동이 벽면의 영향을 크게 받을수록 시스템 성능 변화가 발생하였으며 회전면보다 정지면의 영향력이 더 큰 것을 확인하였다. 형상변수 변화에 따라 기준 설계점 대비 유량계수는 -1.39%~1.25%, 온도강하효율은 -5.41%~2.94% 변화하였다.

비속도의 큰 변화가 극저비속도 원심펌프의 성능에 미치는 영향 (Influence of Large Change of Specific Speed on the Performance of Very Low Specific Speed Centrifugal Pump)

  • 최영도;카가와슈사쿠;쿠로카와준이치
    • 한국유체기계학회 논문집
    • /
    • 제9권1호
    • /
    • pp.40-46
    • /
    • 2006
  • Efficiency of a centrifugal pump is known to drop rapidly with a decrease of specific speed $n_s$. However, below $n_s=60\;[min^{-1},\;m^3/min,\;m]$, the pump characteristics are not yet clear. Therefore, present study is aimed to investigate the influence of large change of specific speed on the performance of a very low specific speed centrifugal pump. Moreover, influence of impeller configuration on the performance of very low specific speed pump is investigated. The results show that very low specific speed can be accomplished by reducing volute throat sectional area using circular spacer. Influence of the spacer's location and configuration in the discharge passage on the pump performance is very small. Best efficiency of very low specific speed centrifugal pump decreases proportionally to the specific speed but the best efficiency decreases on a large scale in the range of $n_s<40$. Influence of impeller configuration on the pump performance and radial thrust of centrifugal pump are considerably small in the range of extremely low specific speed $(n_s=25)$.

Machine learning in concrete's strength prediction

  • Al-Gburi, Saddam N.A.;Akpinar, Pinar;Helwan, Abdulkader
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete's compressive strength is widely studied in order to understand many qualities and the grade of the concrete mixture. Conventional civil engineering tests involve time and resources consuming laboratory operations which results in the deterioration of concrete samples. Proposing efficient non-destructive models for the prediction of concrete compressive strength will certainly yield advancements in concrete studies. In this study, the efficiency of using radial basis function neural network (RBFNN) which is not common in this field, is studied for the concrete compressive strength prediction. Complementary studies with back propagation neural network (BPNN), which is commonly used in this field, have also been carried out in order to verify the efficiency of RBFNN for compressive strength prediction. A total of 13 input parameters, including novel ones such as cement's and fly ash's compositional information, have been employed in the prediction models with RBFNN and BPNN since all these parameters are known to influence concrete strength. Three different train: test ratios were tested with both models, while different hidden neurons, epochs, and spread values were introduced to determine the optimum parameters for yielding the best prediction results. Prediction results obtained by RBFNN are observed to yield satisfactory high correlation coefficients and satisfactory low mean square error values when compared to the results in the previous studies, indicating the efficiency of the proposed model.