DOI QR코드

DOI QR Code

System Performance Variation for Relative Location of Pre-swirl Nozzles and Receiver Holes in Radial On-Board Injection Type Pre-swirl System

반경방향 분사방식 프리스월 시스템의 프리스월 노즐과 리시버 홀의 상대적 위치에 따른 시스템 성능변화

  • Lee, Jonggeon (Dept. of Mechanical Convergence Engineering, Hanyang University) ;
  • Lee, Hyungyu (Dept. of Mechanical Engineering, Hanyang University) ;
  • Cho, Geonhwan (Doosan Heavy Industries and Construction) ;
  • Cho, Jinsoo (School of Mechanical Engineering, Hanyang University)
  • Received : 2019.09.27
  • Accepted : 2019.11.25
  • Published : 2020.01.01

Abstract

The effect of the relative location between pre-swirl nozzle and receiver hole on the performance of radial on-board injection type pre-swirl system was analyzed. In this study, tendency of the change of discharge coefficient and temperature drop efficiency were analyzed for 20 design points through the combination of 5 pre-swirl nozzle location and 4 receiver hole location. Discharge coefficient of system tended to be similar to the pressure ratio of the pre-swirl nozzle. System performance variation occurred as the flow structure in the cavity was affected by the surface, and the influence of the stationary surface is greater than that of the rotating surface. Discharge coefficient of system changed -1.39% to 1.25% and temperature drop efficiency changed -5.41% to 2.94% refer to reference design point.

프리스월 노즐과 리시버 홀의 상대적 위치가 반경방향 분사방식 프리스월 시스템의 성능에 미치는 영향을 분석하였다. 본 연구에서는 5개의 프리스월 노즐 위치와 4개의 리시버 홀 위치 조합을 통해 20개의 설계점에 대한 분석을 진행하여 유량계수와 온도 강하 효율 변화 경향성을 연구하였다. 시스템 유량계수는 프리스월 노즐의 압력비와 비슷한 경향을 보였다. 캐비티 내부의 유동이 벽면의 영향을 크게 받을수록 시스템 성능 변화가 발생하였으며 회전면보다 정지면의 영향력이 더 큰 것을 확인하였다. 형상변수 변화에 따라 기준 설계점 대비 유량계수는 -1.39%~1.25%, 온도강하효율은 -5.41%~2.94% 변화하였다.

Keywords

References

  1. Zhang, F., Wang, X., and Li, J., "Numerical Investigation of Flow and Heat Transfer Characteristics in Radial Pre-swirl System with Different Pre-swirl Nozzle Angles," International Journal of Heat Mass Transfer, Vol. 95, 2016, pp. 984-995. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.010
  2. Lee, H. G., Lee, J. S., Kim, D. H., and Cho, J. S., "Optimization of pre-swirl nozzle shape and radial location to increase discharge coefficient and temperature drop," Journal of Mechanical Science and Technology, Vol. 33, No. 10, 2019, pp. 4855-4866 https://doi.org/10.1007/s12206-019-0926-5
  3. Dittmann, M., Geis, T., Schramm, V., Kim, S., and Wittig, S., "Discharge Coefficients of a Pre-swirl System in Secondary Air Systems," ASME Turbo Expo 2001: Power for Land, Sea, and Air, 2001, p. V003T01A009-V003T01A009.
  4. Bricaud, C., Geis, T., Dullenkopf, K., and Bauer, H. J., "Measurement and Analysis of Aerodynamic and Thermodynamic Losses in Pre-swirl System Arrangements," ASME Turbo Expo 2007: Power for Land, Sea, and Air, 2007, pp. 1115-1126.
  5. Jarzombek, K., Benra, F. K., Dohmen, H. J., and Schneider, O., "CFD Analysis of Flow in High- Radius Pre-Swirl Systems," ASME Turbo Expo 2007: Power for Land, Sea, and Air, 2007, pp. 1159-1167.
  6. Kakade, V. U., Lock, G. D., Wilson, M., Owen, J. M., and Mayhew, J. E., "Effect of Radial Location of Nozzles on Heat Transfer in Preswirl Cooling Systems," Journal of Turbomachinery, Vol. 133, No. 2, 2011, p. 21023. https://doi.org/10.1115/1.4001189
  7. Javiya, U., Chew, J. W., Hills, N. J., Zhou, L., Wilson, M., and Lock, G. D., "CFD Analysis of Flow and Heat Transfer in a Direct Transfer Preswirl System," Journal of Turbomachinery, Vol. 134, No. 3, 2012, p. 31017. https://doi.org/10.1115/1.4003229
  8. Liu, G., Wu, H., Feng, Q., and Liu, S., "Theoretical and Numerical Analysis on the Temperature Drop and Power Consumption of a Pre-swirl System," ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016, p.V05AT15A015-V05AT15A015.
  9. Lewis, P., Wilson, M., Lock, G., and Owen, J. M., "Physical Interpretation of Flow and Heat Transfer in Preswirl systems," Journal of Engineering Gas Turbines Power, Vol. 129, No. 3, 2007, pp. 769-777. https://doi.org/10.1115/1.2436572
  10. Geis, T., Dittmann, M., and Dullenkopf, K., "Cooling Air Temperature Reduction in a direct transfer preswirl system," Journal of Engineering Gas Turbines Power, Vol. 126, No. 4, 2004, pp. 809-815. https://doi.org/10.1115/1.1765124
  11. Kim, S. W., Lee, H. G., Lee, J. S., Kim, D. W., and Cho, J. S., "Comparative Study on a Tangential and Radial On-Board Injection Pre-swirl System of Gas Turbine Secondary Air System," Korean Society for Fluid Machinery Journal of Fluid Machinery, Vol. 21, No. 1, 2018, pp. 19-26.
  12. Karnahl, J., Von Wolfersdorf, J., Tham, K. M., Wilson, M., and Lock, G., "CFD simulations of flow and heat transfer in a pre-swirl system," Proceedings of the ASME Turbo Expo, Vol. 5, No. PARTS A AND B, 2011, pp. 665-677.
  13. Benim, A. C., Brillert, D., and Cagan, M., "Investigation into the Computational Analysis of Direct-Transfer Pre-Swirl Systems for Gas Turbine Blade Cooling," ASME Paper, 2004, GT2004-54151
  14. Huning, M., "Comparison of Discharge Coefficient Measurements and Correlations for Orifices With Cross-Flow and Rotation," Journal of Turbomachinery, Vol. 132, No. 3, 2010, p. 031017. https://doi.org/10.1115/1.3147102
  15. Wilson, M., Pilbrow, R., and Owen, J. M., "Flow and heat transfer in a preswirl rotor-stator system," Journal of Turbomachinery, Vol. 119, No. 2, 1997, pp. 364-373. https://doi.org/10.1115/1.2841120