Browse > Article
http://dx.doi.org/10.12989/imm.2012.5.2.131

Radial basis function collocation method for a rotating Bose-Einstein condensation with vortex lattices  

Shih, Y.T. (Department of Applied Mathematics, National Chung Hsing University)
Tsai, C.C. (Department of Applied Mathematics, National Chung Hsing University)
Chen, K.T. (Department of Applied Mathematics, National Chung Hsing University)
Publication Information
Interaction and multiscale mechanics / v.5, no.2, 2012 , pp. 131-144 More about this Journal
Abstract
We study a radial basis function collocation method (RBFCM) to discretize a coupled nonlinear Schr$\ddot{o}$dinger equation (CNLSE) that governs a two dimensional rotating Bose-Einstein condensate (BEC) with an angular momentum rotation term. We exploit a RBFCM-continuation method (RBFCM-CM) to trace the solution curve of the CNLSE. We compare the performance of the RBFCM-CM with the FEM-CM. We observe that the RBFCM-CM is very robust in a coarse grid for resolving the ground state solution with many vortices when the angular momentum rotation is close to the limit. Numerical results demonstrate the efficiency and accuracy of the RBFCM-CM for computing the superfluid density of the ground level of the BEC.
Keywords
radial basis collocation; inverse multiquadric; meshless; rotating bec; continuation method; vortex lattice; nonlinear schr$\ddot{o}$dinger equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aftalion, A. and Danaila, L. (2002), "Three-dimensional vortex configurations in a rotating Bose Einstein condensate", Phys. Rev. Lett., 68(2), 023603.
2 Allgower, E. and Georg, K. (1990), Numerical continuation method: An introduction, Springer-Verlag, New York.
3 Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E. and Cornell, E.A. (1995), "Observation of Bose-Einstein condensation in a dilute atomic vapor", Science, 269(5221), 198-201.   DOI   ScienceOn
4 Baksmaty, L.O., Liu, Y., Landmanc, U., Bigelowd, N.P. and Pu, H. (2009), "Numerical exploration of vortex matter in Bose-Einstein condensates", Math. Comput. Simulat., 80(1), 131-138.   DOI   ScienceOn
5 Bao, W. and Wang, H. (2006), "An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates", J. Comput. Phys., 217(2), 612-626.   DOI   ScienceOn
6 Butts, D.A. and Rokhsar, D.S. (1999), "Predicted signatures of rotating Bose-Einstein condensates", Nature, 397(6717), 327-329.   DOI   ScienceOn
7 Chang, S.L. and Chien, C.S. (2007), "Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensate", Comput. Phys. Commun., 177(9), 707-719.   DOI   ScienceOn
8 Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., and Ketterle, W. (1995), "Bose-Einstein condensation in a gas of sodium atoms", Phys. Rev. Lett., 75(22), 3969-3973.   DOI   ScienceOn
9 Fasshauer, G.E. (2002), "Newton iteration with multiquadrics for the solution of nonlinear PDEs", Comput. Math. Appl., 43(3-5), 423-438.   DOI   ScienceOn
10 Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N. and Kansa, E.J. (2005), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretization", Eng. Anal. Bound. Elem., 29(12), 1104-1114.   DOI   ScienceOn
11 Fornberg, B. and Piret, C. (2008), "On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere", J. Comput. Phys., 227(5), 2758-2780.   DOI   ScienceOn
12 Gross, E.P. (1961), "Structure of a quantized vortex in boson systems", Nuovo. Cimento., 20(3), 454-477.   DOI   ScienceOn
13 Hardy, R.L. (1971), "Multiquadric equations of topography and other irregular surfaces", J. Geophys. Res., 76(8), 1905-1915.   DOI
14 Hu, H.Y., Lai, C.K. and Chen, J.S. (2009), "A study on convergence and complexity of reproducing kernel collocation method", Interact. Multiscale Mech., 2(3), 295-319.   DOI
15 Hu, H.Y., Li, Z.C. and Cheng, A.H.D. (2005), "Radial basis collocation methods for elliptic boundary value problems", Comput. Math. Appl., 50(1-2), 289-320.   DOI   ScienceOn
16 Huang, C.S., Lee, C.F. and Cheng, A.H.D. (2007), "Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method", Eng. Anal. Bound. Elem., 31(7), 614-623.   DOI   ScienceOn
17 Huang, C.S., Yen, H.D. and Cheng, A.H.D. (2010), "On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs", Eng. Anal. Bound. Elem., 34(9), 802-809.   DOI   ScienceOn
18 Kansa, E.J. (1990), "Multiquadrics -a scattered data approximation scheme with applications to computational fluiddynamics -I.", Comput. Math. Appl., 19(8-9), 127-145.   DOI
19 Kindelan, M., Bernal, F., Pedro Gonzalez-Rodriguez, P. and Moscoso, M. (2010), "Application of the RBF meshless method to the solution of the radiative transport equation", J. Comput. Phys., 229(5), 1897-1908.   DOI   ScienceOn
20 Landau, L.D. and Lifshitz, E.M. (1977), Quantum mechanics, Non-relativistic Theory, Pergamon Press.
21 Matveenko, S.I., Kovrizhin, D., Ouvry, S. and Shlyapnikov, G.V. (2009), "Vortex structures in rotating Bose-Einstein condensates", Phys. Rev. A, 80(6), 063621.   DOI
22 Micchelli, C. (1986), "Interpolation of scattered data: Distance matrices and conditionally positive definite functions", Constr. Approx., 2(1), 11-22.   DOI   ScienceOn
23 Pitaevskii, L.P. (1961), "Vortex lines in an imperfect Bose gas", Soviet Phys. JETP., 13(2), 451-454.
24 Wang, L., Chen, J.S. and Hu, H.Y. (2009), "Radial basis collocation method for dynamic analysis of axially moving beams", Interact. Multiscale Mech., 2(4), 333-352.   DOI