References
- Aftalion, A. and Danaila, L. (2002), "Three-dimensional vortex configurations in a rotating Bose Einstein condensate", Phys. Rev. Lett., 68(2), 023603.
- Allgower, E. and Georg, K. (1990), Numerical continuation method: An introduction, Springer-Verlag, New York.
- Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E. and Cornell, E.A. (1995), "Observation of Bose-Einstein condensation in a dilute atomic vapor", Science, 269(5221), 198-201. https://doi.org/10.1126/science.269.5221.198
- Baksmaty, L.O., Liu, Y., Landmanc, U., Bigelowd, N.P. and Pu, H. (2009), "Numerical exploration of vortex matter in Bose-Einstein condensates", Math. Comput. Simulat., 80(1), 131-138. https://doi.org/10.1016/j.matcom.2009.06.011
- Bao, W. and Wang, H. (2006), "An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates", J. Comput. Phys., 217(2), 612-626. https://doi.org/10.1016/j.jcp.2006.01.020
- Butts, D.A. and Rokhsar, D.S. (1999), "Predicted signatures of rotating Bose-Einstein condensates", Nature, 397(6717), 327-329. https://doi.org/10.1038/16865
- Chang, S.L. and Chien, C.S. (2007), "Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensate", Comput. Phys. Commun., 177(9), 707-719. https://doi.org/10.1016/j.cpc.2007.06.009
- Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., and Ketterle, W. (1995), "Bose-Einstein condensation in a gas of sodium atoms", Phys. Rev. Lett., 75(22), 3969-3973. https://doi.org/10.1103/PhysRevLett.75.3969
- Fasshauer, G.E. (2002), "Newton iteration with multiquadrics for the solution of nonlinear PDEs", Comput. Math. Appl., 43(3-5), 423-438. https://doi.org/10.1016/S0898-1221(01)00296-6
- Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N. and Kansa, E.J. (2005), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretization", Eng. Anal. Bound. Elem., 29(12), 1104-1114. https://doi.org/10.1016/j.enganabound.2005.07.004
- Fornberg, B. and Piret, C. (2008), "On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere", J. Comput. Phys., 227(5), 2758-2780. https://doi.org/10.1016/j.jcp.2007.11.016
- Gross, E.P. (1961), "Structure of a quantized vortex in boson systems", Nuovo. Cimento., 20(3), 454-477. https://doi.org/10.1007/BF02731494
- Hardy, R.L. (1971), "Multiquadric equations of topography and other irregular surfaces", J. Geophys. Res., 76(8), 1905-1915. https://doi.org/10.1029/JB076i008p01905
- Hu, H.Y., Lai, C.K. and Chen, J.S. (2009), "A study on convergence and complexity of reproducing kernel collocation method", Interact. Multiscale Mech., 2(3), 295-319. https://doi.org/10.12989/imm.2009.2.3.295
- Hu, H.Y., Li, Z.C. and Cheng, A.H.D. (2005), "Radial basis collocation methods for elliptic boundary value problems", Comput. Math. Appl., 50(1-2), 289-320. https://doi.org/10.1016/j.camwa.2004.02.014
- Huang, C.S., Lee, C.F. and Cheng, A.H.D. (2007), "Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method", Eng. Anal. Bound. Elem., 31(7), 614-623. https://doi.org/10.1016/j.enganabound.2006.11.011
- Huang, C.S., Yen, H.D. and Cheng, A.H.D. (2010), "On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs", Eng. Anal. Bound. Elem., 34(9), 802-809. https://doi.org/10.1016/j.enganabound.2010.03.002
- Kansa, E.J. (1990), "Multiquadrics -a scattered data approximation scheme with applications to computational fluiddynamics -I.", Comput. Math. Appl., 19(8-9), 127-145. https://doi.org/10.1016/0898-1221(90)90270-T
- Kindelan, M., Bernal, F., Pedro Gonzalez-Rodriguez, P. and Moscoso, M. (2010), "Application of the RBF meshless method to the solution of the radiative transport equation", J. Comput. Phys., 229(5), 1897-1908. https://doi.org/10.1016/j.jcp.2009.11.014
- Landau, L.D. and Lifshitz, E.M. (1977), Quantum mechanics, Non-relativistic Theory, Pergamon Press.
- Matveenko, S.I., Kovrizhin, D., Ouvry, S. and Shlyapnikov, G.V. (2009), "Vortex structures in rotating Bose-Einstein condensates", Phys. Rev. A, 80(6), 063621. https://doi.org/10.1103/PhysRevA.80.063621
- Micchelli, C. (1986), "Interpolation of scattered data: Distance matrices and conditionally positive definite functions", Constr. Approx., 2(1), 11-22. https://doi.org/10.1007/BF01893414
- Pitaevskii, L.P. (1961), "Vortex lines in an imperfect Bose gas", Soviet Phys. JETP., 13(2), 451-454.
- Wang, L., Chen, J.S. and Hu, H.Y. (2009), "Radial basis collocation method for dynamic analysis of axially moving beams", Interact. Multiscale Mech., 2(4), 333-352. https://doi.org/10.12989/imm.2009.2.4.333
Cited by
- A two-parameter continuation algorithm using radial basis function collocation method for rotating Bose–Einstein condensates vol.252, 2013, https://doi.org/10.1016/j.jcp.2013.06.018