DOI QR코드

DOI QR Code

Radial basis function collocation method for a rotating Bose-Einstein condensation with vortex lattices

  • Shih, Y.T. (Department of Applied Mathematics, National Chung Hsing University) ;
  • Tsai, C.C. (Department of Applied Mathematics, National Chung Hsing University) ;
  • Chen, K.T. (Department of Applied Mathematics, National Chung Hsing University)
  • Received : 2011.11.30
  • Accepted : 2012.04.16
  • Published : 2012.06.25

Abstract

We study a radial basis function collocation method (RBFCM) to discretize a coupled nonlinear Schr$\ddot{o}$dinger equation (CNLSE) that governs a two dimensional rotating Bose-Einstein condensate (BEC) with an angular momentum rotation term. We exploit a RBFCM-continuation method (RBFCM-CM) to trace the solution curve of the CNLSE. We compare the performance of the RBFCM-CM with the FEM-CM. We observe that the RBFCM-CM is very robust in a coarse grid for resolving the ground state solution with many vortices when the angular momentum rotation is close to the limit. Numerical results demonstrate the efficiency and accuracy of the RBFCM-CM for computing the superfluid density of the ground level of the BEC.

Keywords

References

  1. Aftalion, A. and Danaila, L. (2002), "Three-dimensional vortex configurations in a rotating Bose Einstein condensate", Phys. Rev. Lett., 68(2), 023603.
  2. Allgower, E. and Georg, K. (1990), Numerical continuation method: An introduction, Springer-Verlag, New York.
  3. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E. and Cornell, E.A. (1995), "Observation of Bose-Einstein condensation in a dilute atomic vapor", Science, 269(5221), 198-201. https://doi.org/10.1126/science.269.5221.198
  4. Baksmaty, L.O., Liu, Y., Landmanc, U., Bigelowd, N.P. and Pu, H. (2009), "Numerical exploration of vortex matter in Bose-Einstein condensates", Math. Comput. Simulat., 80(1), 131-138. https://doi.org/10.1016/j.matcom.2009.06.011
  5. Bao, W. and Wang, H. (2006), "An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates", J. Comput. Phys., 217(2), 612-626. https://doi.org/10.1016/j.jcp.2006.01.020
  6. Butts, D.A. and Rokhsar, D.S. (1999), "Predicted signatures of rotating Bose-Einstein condensates", Nature, 397(6717), 327-329. https://doi.org/10.1038/16865
  7. Chang, S.L. and Chien, C.S. (2007), "Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensate", Comput. Phys. Commun., 177(9), 707-719. https://doi.org/10.1016/j.cpc.2007.06.009
  8. Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., and Ketterle, W. (1995), "Bose-Einstein condensation in a gas of sodium atoms", Phys. Rev. Lett., 75(22), 3969-3973. https://doi.org/10.1103/PhysRevLett.75.3969
  9. Fasshauer, G.E. (2002), "Newton iteration with multiquadrics for the solution of nonlinear PDEs", Comput. Math. Appl., 43(3-5), 423-438. https://doi.org/10.1016/S0898-1221(01)00296-6
  10. Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N. and Kansa, E.J. (2005), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretization", Eng. Anal. Bound. Elem., 29(12), 1104-1114. https://doi.org/10.1016/j.enganabound.2005.07.004
  11. Fornberg, B. and Piret, C. (2008), "On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere", J. Comput. Phys., 227(5), 2758-2780. https://doi.org/10.1016/j.jcp.2007.11.016
  12. Gross, E.P. (1961), "Structure of a quantized vortex in boson systems", Nuovo. Cimento., 20(3), 454-477. https://doi.org/10.1007/BF02731494
  13. Hardy, R.L. (1971), "Multiquadric equations of topography and other irregular surfaces", J. Geophys. Res., 76(8), 1905-1915. https://doi.org/10.1029/JB076i008p01905
  14. Hu, H.Y., Lai, C.K. and Chen, J.S. (2009), "A study on convergence and complexity of reproducing kernel collocation method", Interact. Multiscale Mech., 2(3), 295-319. https://doi.org/10.12989/imm.2009.2.3.295
  15. Hu, H.Y., Li, Z.C. and Cheng, A.H.D. (2005), "Radial basis collocation methods for elliptic boundary value problems", Comput. Math. Appl., 50(1-2), 289-320. https://doi.org/10.1016/j.camwa.2004.02.014
  16. Huang, C.S., Lee, C.F. and Cheng, A.H.D. (2007), "Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method", Eng. Anal. Bound. Elem., 31(7), 614-623. https://doi.org/10.1016/j.enganabound.2006.11.011
  17. Huang, C.S., Yen, H.D. and Cheng, A.H.D. (2010), "On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs", Eng. Anal. Bound. Elem., 34(9), 802-809. https://doi.org/10.1016/j.enganabound.2010.03.002
  18. Kansa, E.J. (1990), "Multiquadrics -a scattered data approximation scheme with applications to computational fluiddynamics -I.", Comput. Math. Appl., 19(8-9), 127-145. https://doi.org/10.1016/0898-1221(90)90270-T
  19. Kindelan, M., Bernal, F., Pedro Gonzalez-Rodriguez, P. and Moscoso, M. (2010), "Application of the RBF meshless method to the solution of the radiative transport equation", J. Comput. Phys., 229(5), 1897-1908. https://doi.org/10.1016/j.jcp.2009.11.014
  20. Landau, L.D. and Lifshitz, E.M. (1977), Quantum mechanics, Non-relativistic Theory, Pergamon Press.
  21. Matveenko, S.I., Kovrizhin, D., Ouvry, S. and Shlyapnikov, G.V. (2009), "Vortex structures in rotating Bose-Einstein condensates", Phys. Rev. A, 80(6), 063621. https://doi.org/10.1103/PhysRevA.80.063621
  22. Micchelli, C. (1986), "Interpolation of scattered data: Distance matrices and conditionally positive definite functions", Constr. Approx., 2(1), 11-22. https://doi.org/10.1007/BF01893414
  23. Pitaevskii, L.P. (1961), "Vortex lines in an imperfect Bose gas", Soviet Phys. JETP., 13(2), 451-454.
  24. Wang, L., Chen, J.S. and Hu, H.Y. (2009), "Radial basis collocation method for dynamic analysis of axially moving beams", Interact. Multiscale Mech., 2(4), 333-352. https://doi.org/10.12989/imm.2009.2.4.333

Cited by

  1. A two-parameter continuation algorithm using radial basis function collocation method for rotating Bose–Einstein condensates vol.252, 2013, https://doi.org/10.1016/j.jcp.2013.06.018