• Title/Summary/Keyword: radial basis functions network

Search Result 43, Processing Time 0.035 seconds

A Novel Kernel SVM Algorithm with Game Theory for Network Intrusion Detection

  • Liu, Yufei;Pi, Dechang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4043-4060
    • /
    • 2017
  • Network Intrusion Detection (NID), an important topic in the field of information security, can be viewed as a pattern recognition problem. The existing pattern recognition methods can achieve a good performance when the number of training samples is large enough. However, modern network attacks are diverse and constantly updated, and the training samples have much smaller size. Furthermore, to improve the learning ability of SVM, the research of kernel functions mainly focus on the selection, construction and improvement of kernel functions. Nonetheless, in practice, there are no theories to solve the problem of the construction of kernel functions perfectly. In this paper, we effectively integrate the advantages of the radial basis function kernel and the polynomial kernel on the notion of the game theory and propose a novel kernel SVM algorithm with game theory for NID, called GTNID-SVM. The basic idea is to exploit the game theory in NID to get a SVM classifier with better learning ability and generalization performance. To the best of our knowledge, GTNID-SVM is the first algorithm that studies ensemble kernel function with game theory in NID. We conduct empirical studies on the DARPA dataset, and the results demonstrate that the proposed approach is feasible and more effective.

The Design of a Pseudo Gaussian Function Network (의사 가우시안 함수 신경망의 설계)

  • 김병만;고국원;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.16-16
    • /
    • 2000
  • This paper describes a new structure re create a pseudo Gaussian function network (PGFN). The activation function of hidden layer does not necessarily have to be symmetric with respect to center. To give the flexibility of the network, the deviation of pseudo Gaussian function is changed according to a direction of given input. This property helps that given function can be described effectively with a minimum number of center by PGFN, The distribution of deviation is represented by level set method and also the loaming of deviation is adjusted based on it. To demonstrate the performance of the proposed network, general problem of function estimation is treated here. The representation problem of continuous functions defined over two-dimensional input space is solved.

  • PDF

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

Nonlinear control system using universal learning network with random search method of variable search length

  • Shao, Ning;Hirasawa, Kotaro;Ohbayashi, Masanao;Togo, Kazuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.235-238
    • /
    • 1996
  • In this paper, a new optimization method which is a kind of random searching is presented. The proposed method is called RasVal which is an abbreviation of Random Search Method with Variable Seaxch Length and it can search for a global minimum based on the probability density functions of searching, which can be modified using informations on success or failure of the past searching in order to execute intensified and diversified searching. By applying the proposed method to a nonlinear crane control system which can be controlled by the Universal Learning Network with radial basis function(R.B.P.), it has been proved that RasVal is superior in performance to the commonly used back propagation learning algorithm.

  • PDF

Visual servoing of robot manipulator by fuzzy membership function based neural network (퍼지 신경망에 의한 로보트의 시각구동)

  • 김태원;서일홍;조영조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.874-879
    • /
    • 1992
  • It is shown that there exists a nonlinear mappping which transforms features and their changes to the desired camera motion without measurement of the relative distance between the camera and the part, and the nonlinear mapping can eliminate several difficulties encountered when using the inverse of the feature Jacobian as in the usual feature-based visual feedback controls. And instead of analytically deriving the closed form of such a nonlinear mapping, a fuzzy membership function (FMF) based neural network is then proposed to approximate the nonlinear mapping, where the structure of proposed networks is similar to that of radial basis function neural network which is known to be very useful in function approximations. The proposed FMF network is trained to be capable of tracking moving parts in the whole work space along the line of sight. For the effective implementation of proposed IMF networks, an image feature selection processing is investigated, and required fuzzy membership functions are designed. Finally, several numerical examples are illustrated to show the validities of our proposed visual servoing method.

  • PDF

The Study of Neural Networks Using Orthogonal function System in Hidden-Layer (직교함수를 은닉층에 지닌 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;유석용;엄기환;손동설
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.482-485
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN(Orthogonal Neural Network). Identification results using a nonlinear function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer

  • PDF

The Study of Neural Networks Using Orthogonal Function System (직교함수를 사용한 신경회로망에 대한 연구)

  • 권성훈;최용준;이정훈;손동설;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.214-217
    • /
    • 1999
  • In this paper we proposed a heterogeneous hidden layer consisting of both sigmoid functions and RBFs(Radial Basis Function) in multi-layered neural networks. Focusing on the orthogonal relationship between the sigmoid function and its derivative, a derived RBF that is a derivative of the sigmoid function is used as the RBF in the neural network. so the proposed neural network is called ONN's feasibility Neural Network). Identification results using a nonlinear. function confirm both the ONN's feasibility and characteristics by comparing with those obtained using a conventional neural network which has sigmoid function or RBF in hidden layer.

  • PDF

A Study on Hybrid Structure of Semi-Continuous HMM and RBF for Speaker Independent Speech Recognition (화자 독립 음성 인식을 위한 반연속 HMM과 RBF의 혼합 구조에 관한 연구)

  • 문연주;전선도;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.94-99
    • /
    • 1999
  • It is the hybrid structure of HMM and neural network(NN) that shows high recognition rate in speech recognition algorithms. And it is a method which has majorities of statistical model and neural network model respectively. In this study, we propose a new style of the hybrid structure of semi-continuous HMM(SCHMM) and radial basis function(RBF), which re-estimates weighting coefficients probability affecting observation probability after Baum-Welch estimation. The proposed method takes account of the similarity of basis Auction of RBF's hidden layer and SCHMM's probability density functions so as to discriminate speech signals sensibly through the learned and estimated weighting coefficients of RBF. As simulation results show that the recognition rates of the hybrid structure SCHMM/RBF are higher than those of SCHMM in unlearned speakers' recognition experiment, the proposed method has been proved to be one which has more sensible property in recognition than SCHMM.

  • PDF

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

Comparison and Evaluation of Root Mean Square for Parameter Settings of Spatial Interpolation Method (공간보간법의 매개변수 설정에 따른 평균제곱근 비교 및 평가)

  • Lee, Hyung-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.29-41
    • /
    • 2010
  • In this study, the prediction errors of various spatial interpolation methods used to model values at unmeasured locations was compared and the accuracy of these predictions was evaluated. The root mean square (RMS) was calculated by processing different parameters associated with spatial interpolation by using techniques such as inverse distance weighting, kriging, local polynomial interpolation and radial basis function to known elevation data of the east coastal area under the same condition. As a result, a circular model of simple kriging reached the smallest RMS value. Prediction map using the multiquadric method of a radial basis function was coincident with the spatial distribution obtained by constructing a triangulated irregular network of the study area through the raster mathematics. In addition, better interpolation results can be obtained by setting the optimal power value provided under the selected condition.