• Title/Summary/Keyword: radial basis function network (RBFN)

Search Result 63, Processing Time 0.02 seconds

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.285-288
    • /
    • 2005
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose a neuro-adaptive controller for robot manipulators using the radial basis function network(RBFN) that is a kind of a neural network. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between the actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that the parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed neuro-adaptive controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

  • PDF

Initial Optimization of the RBFN with Time-Frequency Localization Using Genetic Algorithm (유전 알고리즘과 시간-주파수 지역화를 이용한 방사 기준 함수망의 초기 최적화)

  • 김성주;서재용;김용택;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.221-224
    • /
    • 2001
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part on the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization and genetic algorithm. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we have initial structure of RBFN, After that, we evaluate the parameters of RBF in the network and the parameters needed for the network is more a few. Finally, we make a good decision of the initial structure having an ability of approximation.

  • PDF

Design of an RBFN-based Adaptive Tracking Controller for an Uncertain Mobile Robot (불확실한 이동 로봇에 대한 RBFN 기반 적응 추종 제어기의 설계)

  • Shin, Jin-Ho;Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1238-1245
    • /
    • 2014
  • This paper proposes an RBFN-based adaptive tracking controller for an electrically driven mobile robot with parametric uncertainties and external disturbances. A mobile robot model considered in this paper includes all models of the robot body and actuators with uncertain kinematic and dynamic parameters, and uncertain frictions and external disturbances. The proposed controller consists of an RBFN(Radial Basis Function Network) and a robust adaptive controller. The presented RBFN is used to approximate unknown nonlinear robot dynamic functions. The proposed controller is adjusted by the adaptation laws obtained through the Lyapunov stability analysis. The proposed control scheme does not a priori need the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. Also, nominal parameter values are not required in the controller. The global stability of the closed-loop robot control system is guaranteed using the Lyapunov stability theory. Simulation results show the validity and robustness of the proposed control scheme.

Signal Processing Techniques Based on Adaptive Radial Basis Function Networks for Chemical Sensor Arrays

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.161-172
    • /
    • 2016
  • The use of a chemical sensor array can help discriminate between chemicals when comparing one sample with another. The ability to classify pattern characteristics from relatively small pieces of information has led to growing interest in methods of sensor recognition. A variety of pattern recognition algorithms, including the adaptive radial basis function network (RBFN), may be applicable to gas and/ or odor classification. In this paper, we provide a broad review of approaches for various types of gas and/or odor identification techniques based on RBFN and drift compensation techniques caused by sensor poisoning and aging.

Recognition of High Impedance Fault Patterns according to the Chaotic Features (카오스 특징 추출에 의한 고저항 지락사고의 패턴인식)

  • 신승연;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.311-314
    • /
    • 1997
  • This paper presents recognition of high impedance fault patterns based of chaotic features using the Radial Basis Function Network(RBFN). The chaos attractor is reconstructed from the fault current data for pattern recognition. The RBFN successfully classifies the three kinds of fault pattems and one normal pattem.

  • PDF

Modeling of Process Plasma Using a Radial Basis Function Network: A Cases Study

  • Kim, Byungwhan;Sungjin Rark
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-273
    • /
    • 2000
  • Plasma models are crucial to equipment design and process optimization. A radial basis function network(RBFN) in con-junction with statistical experimental design has been used to model a process plasma. A 2$^4$ full factorial experiment was employed to characterized a hemispherical inductively coupled plasma(HICP) in characterizing HICP, the factors that were varied in the design include source power, pressure, position of shuck holder, and Cl$_2$ flow rate. Using a Langmuir probe, plasma attributes were collected, which include typical electron density, electron temperature. and plasma potential as well as their spatial uniformity. Root mean-squared prediction errors of RBEN are 0.409(10(sup)12/㎤), 0.277(eV), and 0.699(V), for electron density, electron temperature, and Plasma potential, respectively. For spatial uniformity data, they are 2.623(10(sup)12/㎤), 5.704(eV) and 3.481(V), for electron density, electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network(GRNN) revealed an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface model. Both RBEN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.

  • PDF

SOx Process Simulation, Monitoring, and Pattern Classification in a Power Plant (발전소에서의 SOx 공정 모사, 모니터링 및 패턴 분류)

  • 최상욱;유창규;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.827-832
    • /
    • 2002
  • We propose a prediction method of the pollutant and a synchronous classification of the current state of SOx emission in the power plant. We use the auto-regressive with exogeneous (ARX) model as a predictor of SOx emission and use a radial basis function network (RBFN) as a pattem classifier. The ARX modeling scheme is implemented using recursive least squares (RLS) method to update the model parameters adaptively. The capability of SOx emission monitoring is utilized with the application of the RBFN classifier. Experimental results show that the ARX model can predict the SOx emission concentration well and ARX modeling parameters can be a good feature for the state monitoring. in addition, its validity has been verified through the power spectrum analysis. Consequently, the RBFN classifier in combination with ARX model is shown to be quite adequate for monitoring the state of SOx emission.

Direct adaptive control of chaotic nonlinear systems using a radial basis function network (방사 기저 함수 회로망을 이용한 혼돈 비선형 시스템의 직접 적응 제어)

  • 김근범;박광성;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.219-222
    • /
    • 1997
  • Due to the unpredictability and irregularity, the behaviors of chaotic systems are considered as undesirable phenomena to be avoided or controlled. Thus in this paper, to control systems showing chaotic behaviors, a direct adaptive control method using a radial basis function network (RBFN) as an excellent alternative of multi-layered feed-forward networks is presented. Compared with an indirect scheme, a direct one does not need the estimation of the controlled process and gives fast control effects. Through simulations on the two representative continuous-time chaotic systems, Duffing and Lorenz systems, validity of the proposed control scheme is shown.

  • PDF

Optimal Design of Radial Basis Function Network Using Time-Frequency Localization (시간-주파수 지역화를 이용한 방사 기준 함수 구조의 최적 설계)

  • Kim, Yong-Taek;Kim, Seong-Joo;Seo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network(RBFN) which is more simple in the part of the structure and converges more faster than Neural Network. For this, we use the analysis method using time frequency localization and we can decide the initial structure of the RBFN suitable for the given problem. When we compose the hidden nodes with the radial basis functions whose localization are similar with the target function in the plane of the time and frequency, we can make a good decision of the initial structure having an ability of approximation.

  • PDF

Modeling of plasma etch process using genetic algorithm and radial basis function network (유전자 알고리즘과 레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링)

  • Park, Kyoung-Young;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.159-162
    • /
    • 2004
  • 플라즈마 공정 모델 개발에 역전파 신경망이 가장 많이 응용되고 있으나, 관여하는 다수의 학습인자로 인해 그 최적화가 매우 어렵다. Radial basis function network (RBFN)은 관여하는 학습인자의 수가 적어 그 최적화가 상대적으로 용이하지만, 두인자의 다양한 조합에 의해 RBFN의 예측성능이 상당히 영향을 받을 수 있다. 본 연구에서는 학습인자 상호간의 작용을 유전자 알고리즘 (genetic algorithm-GA)을 이용하여 최적화하는 기법을 소개한다. 제안하는 알고리즘을 광도파로 제작을 위해 수행한 실리카 식각공정 데이터에 적용하여 평가하였다. 평가에 이용된 식각 응답은, 실리카 식각률, aluminum (Al) 식각률, Al 선택비, 그리고 실리카 프로파일 각도이다. 최적화한 모델은 종래의 모델과 비교하였으며, 그 향상도는 실리카 식각률, Al 식각률, Al 선택비, 그리고 실리카 프로파일 각도에 대해서 각 기 0.8%, 32.4%, 20.3%, 1.3% 등이었다. Al 식각률과 선택비에 대해서 예측성능은 상당이 향상되었다.

  • PDF