• Title/Summary/Keyword: rack gear

Search Result 49, Processing Time 0.02 seconds

Roller Track Gear System Design based on Roller Gear Mechanism (RGM 기반 롤러 트랙 기어 시스템 설계)

  • Kwon, Soon-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.194-198
    • /
    • 2014
  • In recent years, RGM(roller gear mechanism) systems, wherein one of the gears of a meshing gear pair is replaced with pins or rollers, have been reintroduced, which is a consequence of, and therefore a reflection of, the rapid advances made in manufacturing technology. Three RTG(roller track gear) systems for arbitrary path transportation (e.g., L-, O-, U-, and S-shaped tracks) were constructed using two out of three RGM systems, namely, the CRP(cam rack pinion), CRG(cam ring gear), and RPG(roller pinion gear) systems, and are introduced in this paper. We also present three ways to prevent the intersection and non-contact phenomena at the teeth in the vicinity of the conversion point between two joined RGM systems.

A Study on the Development of the Gear Profile Design Program (기어 치형 설계 프로그램 개발에 관한 연구)

  • Jung, Sung-Pil;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.104-111
    • /
    • 2009
  • In this paper, the gear design program is presented. The profile of gears is created using classical mathematic formulations. In each gear, a kinematic joint is applied and one can define the 20 contact condition between gear pairs. Initial and boundary conditions such as force, torque, velocity, acceleration, etc. can be set. Thus, it is possible to analyze dynamic characteristics of gear pairs such as reaction moment and the variation of angular velocity. In order to find the optimal profile of gear pairs, two optimization methods based on design of experiments are inserted in the program; One is the Taguchi method and the other is the response surface analysis method. To verify the program, the rack & pinion gear is created and analyzed. Simulation results show that the developed program is useful and result data is reliable.

Case Study of Tribological Failure Characteristics in Automotive Steering System (자동차 조향장치의 트라이볼로지적 고장특성에 관한 사례연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 2010
  • The purpose of this paper is to study and analyze the failure examples on tribological characteristics of an automotive steering system. In this failure study, the grease leakage may stick leaked grease, dust, and wear particles between pinion and rack gears in mechanical steering system. In the case of seal failures such as a rod seal, o-ring and oil seals, the gear box and oil pump do not operate properly due to lack of oils. This means that oil pump does not supply a working fluid and produce a normal oil pressure of the steering system. This leads to leak a working fluid from the seals and produce a wear between pinion and rack gears. Especially, the leaked oil is usually mixed with internal wear particles and foreign dust/fine sands. Thus no leakage of working oils is very important design concepts, which is strongly related to the sealing components and smoothly operating of the mechanical friction parts of power steering system.

Kinematic Design of High-Efficient Rotational Triboelectric Nanogenerator (고효율 회전형 정전 나노 발전기의 기구학적 설계)

  • Jihyun Lee;Seongmin Na;Dukhyun Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.106-111
    • /
    • 2024
  • A triboelectric nanogenerator is a promising energy harvester operated by the combined mechanism of electrostatic induction and contact electrification. It has attracting attention as eco-friendly and sustainable energy generators by harvesting wasting mechanical energies. However, the power generated in the natural environment is accompanied by low frequencies, so that the output power under such input conditions is normally insufficient amount for a variety of industrial applications. In this study, we introduce a non-contact rotational triboelectric nanogenerator using pedaling and gear systems (called by P-TENG), which has a mechanism that produces high power by using rack gear and pinion gear when a large force by a pedal is given. We design the system can rotate the shaft to which the rotor is connected through the conversion of vertical motion to rotational motion between the rack gear and the pinion gear. Furthermore, the system controls the one directional rotation due to the engagement rotation of the two pinion gears and the one-way needle roller bearing. The TENG with a 2 mm gap between the rotor and the stator produces about the power of 200 ㎼ and turns on 82 LEDs under the condition of 800 rpm. We expect that P-TENG can be used in a variety of applications such as operating portable electronics or sterilizing contaminated water.

Design and Fabrication of Scaffold Type Energy Harvester Using Multiplying Gear Module (증속기어 모듈을 이용한 발판형 에너지 하베스터의 설계 및 제작)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.857-862
    • /
    • 2014
  • In this paper, we designed and fabricated electromagnetic induction based scaffold type energy harvester. For energy harvesting, mechanical energy of vertical motion is transferred to rotational energy using rack gear and multiplying gear was used to maximize energy transfer. To optimize design parameters, physical structure of energy harvester was modeled using finite element method. The effect of multiplying gear ratio and frequency levels of applied mechanical energy on energy generation efficiency are analyzed by computer simulation and experimental test. Experimental results showed that maximum 25.36 W of electric power can be achieved at the frequency of 2 Hz and 1:77 of gear ratio with only 5 mm of vertical changes on scaffold structure.

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

Improvement of on Center Steer Feel by Using Power Steering Gear Box Characteristics (파워스티어링 기어박스 특성을 이용한 중립 조향감의 향상)

  • 이병림;이재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.202-208
    • /
    • 2002
  • Ball k nut type steering gear box has disadvantages on on-center range as compared with rack & pinion type because of many linkages. In this study, a technique which can improve the on-center loose feel is introduced. The improvement can be obtained by putting simple devices on steering gear box valve body which can change the stiffness of steering gear on on-center handling range. Analysis and test of the vehicle with improved steering system are performed.

Theoretical Shape Analysis of Continuous Contact Helical Gear for Low Noise Pump (저소음 기어펌프용 연속접촉 헬리컬기어의 형상 설계에 관한 연구)

  • Kim, Kaptae;Shin, Soosik;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.58-66
    • /
    • 2018
  • The use of external gear pumps is an effective way to achieve adequate performance at low cost when composing hydraulic systems. The biggest drawback, on the other hand, is the accompanying noise. Gears of continuous contact shape are actively used for the pump recently. The continuous contact shape must be the helical type due to the nature of the gear pump that is driven only by the drive gear. In this paper the theoretical shape of continuous contact gear is analyzed using simple rack shape of straight lines and two circular arcs. Using such geometry, the theoretical equation will be developed by envelope curves according to the conjugate gear shape rules. After checking the validity of the theory by the shape of gear rules, the grinding shape was also developed. The 3D shapes using equation can be also drawn. It was also shown that contact ratio and radius of curvature are easily developed by the theoretical equations.

Pitting Life for RRP System (RRP 시스템의 피팅수명)

  • Kim, Chang-Hyun;Nam, Hyung-Chul;Kwon, Soon-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.387-393
    • /
    • 2012
  • A roller rack pinion (RRP) system, which consists of a rack-bar and a cam pinion, transforms a rotation motion into a linear one. The rack-bar has a series of roller trains, and meshes with the cam pinion. This paper first proposes the exact tooth profile of the cam pinion and the non-undercut condition to satisfy the required performance by introducing the profile shift coefficient. The paper then investigates the load stress factors under various shape design parameters to predict the gear surface fatigue limit, which was strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly with an increase in the profile shift coefficient.

Development of Valve Balance Test Equipment for Power Steering Gear (파워 스티어링 기어의 밸브 밸런스 테스트 장비 개발)

  • Go, S.J.;Park, M.K.;Won, T.H.;Kim, H.S.;Kim, K.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • Steering gear is the part of an automobile that change circular movement of steering wheel to lateral movement of rack to change driving direction. This can be classified with manual and power steering gear. Manual steering gear is operated only with human power while power steering gear use oil pressure support. These days power steering gear is more common to almost of the car. Recently a korean company manufactures a speed sensitive power steering which provide variable steering feel depend on the speed of car. The Broens company of Australia produces and exports the test equipments for the manufacture of power steering valves and assemblies to major vehicle manufactures. Some korean companies imported the test equipments from Australia, thus increasing the cost. The purpose of this study is development of the valve balance test equipment to measure the valve torque of the power steering gear. This study designed and manufactured the valve balance test equipment to take hold of the power steering valve using CAE analysis. In order to evaluate the performance of the developed valve balance test equipment, the R&R tests have been conducted.