• 제목/요약/키워드: rRNA sequence

검색결과 1,097건 처리시간 0.026초

Screening of Cholesterol-lowering Bifidobacterium from Guizhou Xiang Pigs, and Evaluation of Its Tolerance to Oxygen, Acid, and Bile

  • Zhang, Rujiao;He, Laping;Zhang, Ling;Li, Cuiqin;Zhu, Qiujin
    • 한국축산식품학회지
    • /
    • 제36권1호
    • /
    • pp.37-43
    • /
    • 2016
  • Cardiovascular and cerebrovascular diseases seriously harm human health, and Bifidobacterium is the most beneficial probiotic in the gastrointestinal tract of humans. This work aimed to screen cholesterol-lowering Bifidobacterium from Guizhou Xiang Pig and evaluate its tolerance to oxygen, acid, and bile. Twenty-seven aerotolerant strains with similar colony to Bifidobacterium were isolated through incubation at 37℃ in 20% (v/v) CO2-80% (v/v) atmospheric air by using Mupirocin lithium modified MRS agar medium, modified PTYG with added CaCO3, and modified PTYG supplemented with X-gal. Ten strains with cholesterol-lowering rates above 20% (w/w) were used for further screening. The selected strains’ tolerance to acid and bile was then determined. A combination of colony and cell morphology, physiological, and biochemical experiments, as well as 16S rRNA gene-sequence analysis, was performed. Results suggested that BZ25 with excellent characteristics of high cholesterol-removal rate of 36.32% (w/w), as well as tolerance to acid and bile, was identified as Bifidobacterium animalis subsp. lactis. To further evaluate Bifidobacterium BZ25’s growth characteristic and tolerance to oxygen, culture experiments were performed in liquid medium and an agar plate. Findings suggested that BZ25 grew well both in environmental 20% (v/v) CO2-80% (v/v) atmospheric air and in 100% atmospheric air because BZ25 reached an absorbance of 1.185 at 600 nm in 100% atmospheric air. Moreover, BZ25 was aerotolerant and can grow in an agar medium under the environmental condition of 100% atmospheric air. This study can lay a preliminary foundation for the potential industrial applications of BZ25.

\beta-Mannanase를 생산하는 Bacillus subtilis JS-1의 분리 및 효소 생산성 (Optimization of \beta-mammanase Production from Bacillus subtilis JS-1.)

  • 임지수;정진우;이종수;강대경;강하근
    • 한국미생물·생명공학회지
    • /
    • 제31권1호
    • /
    • pp.57-62
    • /
    • 2003
  • 토양으로부터 $\beta$-mannanase활성이 우수한 균주를 분리하여 형태학적, 생화학적 동정과정을 거쳐 Bacillus subtilis JS-1으로 동정하였다. 분리균이 생산하는 $\beta$-mannanase 효소의 최적활성은 55$^{\circ}C$와 pH 5.0이었다. 탄소원이 다른 배지에서 배양한 분리 균주의 상등액을 전기영동하여 효소활성을 관찰한 결과 탄소원에 상관없이 분자량 130kDa에 해당하는 단일 단백질만이 효소 활성을 나타내었다 Bacillus subtilis JS-1은 탄소원으로 lactose와 locust bean gum이 존재할 때 $\beta$-mannanase 생산성이 크게 증가하는 것으로 나타났으며, lactose와 locust bean gum이 각각 0.5 % 존재할 때 배양 상등액의 $\beta$-mannanase 활성은 30U/ml과 45U/ml로 탄소원이 없는 대조구에 비해 최대 18배 정도 생산성이 증가하였다. 배지에 locust bean gum을 첨가하였을 때 효소 생산성 뿐만 아니라 균체의 성장도 함께 증가하는 것으로 보아 분리균주는 locust bean gum을 분해하여 에너지원으로 이용하는 것으로 판단된다

Bioconversion of Ginsenosides from Red Ginseng Extract Using Candida allociferrii JNO301 Isolated from Meju

  • Lee, Sulhee;Lee, Yong-Hun;Park, Jung-Min;Bai, Dong-Hoon;Jang, Jae Kweon;Park, Young-Seo
    • Mycobiology
    • /
    • 제42권4호
    • /
    • pp.368-375
    • /
    • 2014
  • Red ginseng (Panax ginseng), a Korean traditional medicinal plant, contains a variety of ginsenosides as major functional components. It is necessary to remove sugar moieties from the major ginsenosides, which have a lower absorption rate into the intestine, to obtain the aglycone form. To screen for microorganisms showing bioconversion activity for ginsenosides from red ginseng, 50 yeast strains were isolated from Korean traditional meju (a starter culture made with soybean and wheat flour for the fermentation of soybean paste). Twenty strains in which a black zone formed around the colony on esculin-yeast malt agar plates were screened first, and among them 5 strains having high ${\beta}$-glucosidase activity on p-nitrophenyl-${\beta}$-D-glucopyranoside as a substrate were then selected. Strain JNO301 was finally chosen as a bioconverting strain in this study on the basis of its high bioconversion activity for red ginseng extract as determined by thin-layer chromatography (TLC) analysis. The selected bioconversion strain was identified as Candida allociferrii JNO301 based on the nucleotide sequence analysis of the 18S rRNA gene. The optimum temperature and pH for the cell growth were $20{\sim}30^{\circ}C$ and pH 5~8, respectively. TLC analysis confirmed that C. allociferrii JNO301 converted ginsenoside Rb1 into Rd and then into F2, Rb2 into compound O, Rc into compound Mc1, and Rf into Rh1. Quantitative analysis using high-performance liquid chromatography showed that bioconversion of red ginseng extract resulted in an increase of 2.73, 3.32, 33.87, 16, and 5.48 fold in the concentration of Rd, F2, compound O, compound Mc1, and Rh1, respectively.

Polymorphism and Expression of Isoflavone Synthase Genes from Soybean Cultivars

  • Kim, Hyo-Kyoung;Jang, Yun-Hee;Baek, Il-Sun;Lee, Jeong-Hwan;Park, Min Joo;Chung, Young-Soo;Chung, Jong-Il;Kim, Jeong-Kook
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.67-73
    • /
    • 2005
  • Isoflavones are synthesized by isoflavone synthases via the phenylpropanoid pathway in legumes. We have cloned two isoflavone synthase genes, IFS1 and IFS2, from a total of 18 soybean cultivars. The amino acid residues of the proteins that differed between cultivars were dispersed over the entire coding region. However, amino acid sequence variation did not occur in conserved domains such as the ERR triad region, except that one conserved amino acid was changed in the IFS2 protein of the GS12 cultivar ($R_{374}G$) and the IFS1 proteins of the 99M06 and Soja99s65 cultivars ($A_{109}T$, $F_{105}I$). In three cultivars (99M06, 99M116, and Simheukpi), most of amino acid changes were such that the difference between the amino acid sequences of IFS1 and IFS2 was reduced. The expression profiles of three enzymes that convert naringenin to the isoflavone, genistein, chalcone isomerase (CHI), isoflavone synthase (IFS) and flavanone 3-hydroxylase (F3H) were examined. In general, IFS mRNA was more abundant in etiolated seedlings than mature plants whereas the levels of CHI and F3H mRNAs were similar in the two stages. During seed development, IFS was expressed a little later than CHI and F3H but expression of these three genes was barely detectable, if at all, during later seed hardening. In addition, we found that the levels of CHI, F3H, and IFS mRNAs were under circadian control. We also showed that IFS was induced by wounding and by application of methyl jasmonate to etiolated soybean seedlings.

Cold-Adapted and Rhizosphere-Competent Strain of Rahnella sp. with Broad-Spectrum Plant Growth-Promotion Potential

  • Vyas, Pratibha;Joshi, Robin;Sharma, K.C.;Rahi, Praveen;Gulati, Ashu;Gulati, Arvind
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1724-1734
    • /
    • 2010
  • A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1-carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole-3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3-pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of cold-tolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14

  • Phitsuwan, Paripok;Tachaapaikoon, Chakrit;Kosugi, Akihiko;Mori, Yutaka;Kyu, Khin Lay;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.893-903
    • /
    • 2010
  • A cellulolytic and xylanolytic enzyme complex-producing alkalothermoanaerobacterium strain, Tepidimicrobium xylanilyticum BT14, is described. The cell was Grampositive, rod-shaped, and endospore-forming. Based on 16S rRNA gene analysis and various lines of biochemical and physiological properties, the strain BT14 is a new member of the genus Tepidimicrobium. The strain BT14 cells had the ability to bind to Avicel, xylan, and corn hull. The pH and temperature optima for growth were 9.0 and $60^{\circ}C$, respectively. The strain BT14 was able to use a variety of carbon sources. When the bacterium was grown on corn hulls under an anaerobic condition, a cellulolytic and xylanolytic enzyme complex was produced. Crude enzyme containing cellulase and xylanase of the strain BT14 was active in broad ranges of pH and temperature. The optimum conditions for cellulase and xylanase activities were pH 8.0 and 9.0 at $60^{\circ}C$, respectively. The crude enzyme had the ability to bind to Avicel and xylan. The analysis of native-PAGE and native-zymograms indicated the cellulosebinding protein showing both cellulase and xylanase activities, whereas SDS-PAGE zymograms showed 4 bands of cellulases and 5 bands of xylanases. Evidence of a cohesinlike amino acid sequence seemed to indicate that the protein complex shared a direct relationship with the cellulosome of Clostridium thermocellum. The crude enzyme from the strain BT14 showed effective degradation of plant biomass. When grown on corn hulls at pH 9.0 and $60^{\circ}C$ under anaerobic conditions, the strain BT14 produced ethanol and acetate as the main fermentation products.

A Technique for the Prevention of Greenhouse Whitefly (Trialeurodes vaporariorum) Using the Entomopathogenic Fungus Beauveria bassiana M130

  • Kim, Chang-Su;Lee, Jung-Bok;Kim, Beam-Soo;Nam, Young-Ho;Shin, Kee-Sun;Kim, Jin-Won;Kim, Jang-Eok;Kwon, Gi-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2014
  • The possibility of using hyphomycete fungi as suitable biocontrol agents against greenhouse whitefly has led to the isolation of various insect pathogenic fungi. Among them is Beauveria bassiana, one of the most studied entomopathogenic fungi. The objective of this study was to use B. bassiana M130 as an insecticidal agent against the greenhouse whitefly. M130 isolated from infected insects is known to be a biocontrol agent against greenhouse whitefly. Phylogenetic classification of M130 was determined according to its morphological features and 18S rRNA sequence analysis. M130 was identified as B. bassiana M130 and showed chitinase (342.28 units/ml) and protease (461.70 units/ml) activities, which were involved in the invasion of the host through the outer cuticle layer, thus killing them. The insecticidal activity was 55.2% in petri-dish test, 84.6% in pot test, and 45.3% in field test. The results of this study indicate that B. bassiana has potential as a biological agent for the control of greenhouse whitefly to replace chemical pesticides.

Polyphasic Microbial Analysis of Traditional Korean Jeung-Pyun Sourdough Fermented with Makgeolli

  • Lim, Sae Bom;Tingirikari, Jagan Mohan Rao;Kwon, Ye Won;Li, Ling;Kim, Grace E.;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.226-233
    • /
    • 2017
  • Jeung-pyun, a fermented rice cake, is prepared by fermenting rice sourdough using makgeolli, a traditional Korean rice wine, in the presence of yeast and lactic acid bacteria (LAB). The goal of this study was to conduct biochemical and microbial analyses of five different rice sourdoughs, each fermented with a different commercial makgeolli, using culture-dependent and culture-independent approaches. All sourdough samples fermented with different makgeolli for 6.5 h showed different profiles in pH, total titratable acidity, organic acid concentration, and microbial growth. LAB belonging to different genera were identified based on colony morphology on modified MRS and sourdough bacteria agar medium. PCR-denaturing gradient gel electrophoresis analyses of the five sourdoughs showed different bands corresponding to LAB and yeast. 16S/26S rRNA gene sequence analyses of the samples confirmed that the predominant LAB in the five fermented rice doughs was Lactobacillus plantarum, Lb. pentosus, and Lb. brevis. Various other Lactobacillus spp. and Saccharomyces cerevisiae were common in all five fermented samples. This study provides comprehensive and comparative information on the microflora involved in fermentation of rice sourdough and signifies the need to develop effective starters to enrich the quality of jeung-pyun.

백합(Meretrix meretrix)식해에서 분리한 Pediococcus pentosaceus SH-10의 생균제적 특성 (Probiotic Properties of Pediococcus pentosaceus SH-10 Isolated from the Hard Clam Meretrix meretrix Shikhae)

  • 송현정;김강진;김희대;유정희;구재근;박권삼
    • 한국수산과학회지
    • /
    • 제44권6호
    • /
    • pp.605-611
    • /
    • 2011
  • This study examined the suitability of characteristics of potential strains of probiotic bacteria. Among 25 lactic acid bacteria isolated from Korean traditional fermented food, the Hard Clam Meretrix meretrix Shikhae, the SH-10 strain, which exhibited superior resistance to low pH and bile salts, was selected as a potential probiotic bacteria. By examining carbohydrate utilization, morphological properties, and the 16S rRNA gene sequence, the SH-10 strain was identified as Pediococcus pentosaceus (hereafter, P. pentosaceus SH-10). P. pentosaceus SH-10 was resistant to amikacin, cefotetan, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, and vancomycin. Tests of antimicrobial activities against pathogens such as Bacillus cereus, Listeria monocytogenes, Salmonella choleraesuis, and Staphylococcus aureus, indicated that P. pentosaceus SH-10 inhibited the growth of pathogenic bacteria. These results suggest that P. pentosaceus SH-10 can be developed as a probiotic bacteria.

버섯 세균성회색무늬병균(Pseudomonas agarici)에 대한 Alcaligenes sp. HC12의 항균활성 (Antagonistic Effects of the Bacterium Alcaligenes sp. HC12 on Browning Disease Caused by Pseudomonas agarici)

  • 이찬중;문지원;정종천;공원식
    • 한국균학회지
    • /
    • 제44권3호
    • /
    • pp.171-175
    • /
    • 2016
  • Pseudomonas agarici에 의해 발생하는 세균성회색무늬병은 양송이 재배에서 문제가 되는 대표적인 병해이다. 본 연구에서는 세균성회색무늬병의 생물학적 방제법에 이용할 수 있는 길항미생물의 항균활성과 선발된 길항미생물에 대해 폿트 수준의 생물검정 실험을 실시하였다. 재배중인 양송이 배지에서 세균성회색무늬병 병원균을 강하게 억제하는 길항세균 HC12를 선발하였으며, 생리 생화학적 실험과 유전적 실험결과 HC12균주는 Alcaligenes sp.로 동정되었다. Alcaligenes sp. HC12를 양송이에 처리한 결과 63%의 방제효과를 보였다. 따라서 Alcaligenes sp. HC12가 양송이버섯 세균성회색무늬병 방제를 위해 합성농약을 대체할 수 있는 친환경 방제제가 될 수 있을 것으로 생각된다.