• Title/Summary/Keyword: rRNA genes

Search Result 794, Processing Time 0.031 seconds

Plant Immunity against Viruses: Moving from the Lab to the Field (식물바이러스 면역반응 최신 연구 동향 및 전망)

  • Kim, Nam-Yeon;Hong, Jin-Sung;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.9-25
    • /
    • 2018
  • Plant viruses cause significant yield losses and continuously threaten crop production, representing a serious threat to global food security. Studies on plant-virus interactions have contributed to increase our knowledge on plant immunity mechanism, providing new strategies for crop improvement. The prophylactic managements consist mainly following international legislations, eradication of infected plants, and application of pesticide to decrease the population of vectors. Hence, putting together the pieces of knowledge related to molecular plant immunity to viruses is critical for the control of virus disease in fields. Over the last several decades, the outstanding outcomes of extensive research have been achieved on comprehension of plant immunity to viruses. Although most dominant R genes have been used as natural resistance genes, recessive resistance genes have been deployed in several crops as another efficient strategy to control viruses. In addition, RNA interference also regulates plant immunity and contribute a very efficient antiviral system at the nucleic acid level. This review aims at describing virus disease on crops and summarizes current resistance mechanisms. Furthermore, we will discuss the current biotechnological approaches to control viral diseases and the future questions that are to be addressed to secure crop production against viruses.

Complete genome sequence of Marinobacter salarius HL2708#2 isolated from a lava sea water environment on Jeju Island (제주용암 해수 환경에서 분리한 Marinobacter salarius HL2708#2의 유전체 해독)

  • Oh, Hyun-Myung;Kim, Dae-Hyun;Han, Seong-Jeong;Song, Jong-Ho;Kim, Kukhyun;Jang, Dongil
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.69-73
    • /
    • 2019
  • During screening of microbes for compounds having cosmetic benefits, we isolated Marinobacter salarius HL2708#2 from lava seawater on Jeju Island, Republic of Korea. The complete genome sequence was determined. Strain HL27080#2 features a circular chromosome of 4,304,603 bp with 57.21% G+C content and a 244,163 bp plasmid with 53.14% G+C. There were 4,180 protein coding sequences identified, along with 49 transfer RNA and 18 ribosomal RNA noncoding genes. The genome harbored genes for the utilization of alcohol, maltose/starch, and monosaccharide as sole carbon sources. Genes responsible for halophilic characteristics and heavy metal resistance could be annotated, as well as aromatic and alkane hydrocarbons. Contrary to the prior report that M. salarius is negative for nitrate and nitrite reduction, nitrate/nitrite reductase along with nitrate/nitrate transporters and nitronate monooxygenase were evident, suggesting that strain HL2708#2 may be able to denitrify extracellular nitroalkenes to ammonia.

Transcriptome sequencing reveals non-coding RNAs respond to porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in Kele piglets

  • Jing Zhang;Chunping Zhao;Min Yao;Jing Qi;Ya Tan;Kaizhi Shi;Jing Wang;Sixuan Zhou;Zhixin Li
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.663-681
    • /
    • 2024
  • Co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (HPS) has severely restricted the healthy development of pig breeding. Exploring disease resistance of non-coding RNAs in pigs co-infected with PRRSV and HPS is therefore critical to complement and elucidate the molecular mechanisms of disease resistance in Kele piglets and to innovate the use of local pig germplasm resources in China. RNA-seq of lungs from Kele piglets with single-infection of PRRSV or HPS and co-infection of both pathogens was performed. Two hundred and twenty-five differentially expressed long non-coding RNAs (DElncRNAs) and 30 DEmicroRNAs (DEmiRNAs) were identified and characterized in the PRRSV and HPS co-infection (PRRSV-HPS) group. Compared with the single-infection groups, 146 unique DElncRNAs, 17 unique DEmiRNAs, and 206 target differentially expressed genes (DEGs) were identified in the PRRSV-HPS group. The expression patterns of 20 DEmiRNAs and DElncRNAs confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) were consistent with those determined by high-throughput sequencing. In the PRRSV-HPS group, the target DEGs were enriched in eight immune Gene Ontology terms relating to two unique DEmiRNAs and 16 DElncRNAs, and the unique target DEGs participated the host immune response to pathogens infection by affecting 15 immune-related Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Notably, competitive endogenous RNA (ceRNA) networks of different groups were constructed, and the ssc-miR-671-5p miRNA was validated as a potential regulatory factor to regulate DTX4 and AEBP1 genes to achieve innate antiviral effects and inhibit pulmonary fibrosis by dual-luciferase reporter assays. These results provided insight into further study on the molecular mechanisms of resistance to PRRSV and HPS co-infection in Kele piglets.

The Relationship of Pulmonary Artery Copper Concentrations and Genes Involved in Copper Homeostasis in Cattle, Swine, and Goats

  • Han, Hyung-Chul;So, Hye-Jin;Domby, Elizabeth;Engle, Terry
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.194-199
    • /
    • 2012
  • Liver and pulmonary artery tissue from 5 Angus cross bred steers, 6 goats, and 6 pigs were collected at a commercial abattoir to examine the relationship of pulmonary artery copper (Cu) concentrations and genes involved in copper homeostasis. Liver and pulmonary artery samples were collected at the time of harvest and snap frozen. Liver and pulmonary artery Cu concentrations were determined via flame atomic absorption spectrophotometry and gene expression was determined via real time PCR. Liver Cu concentrations (mg Cu/kg DM${\pm}$SE) were higher (p<0.01) in cows ($396.4{\pm}109.1$) and goats ($181.4{\pm}37.0$) than in pigs ($19.2{\pm}3.5$). All liver Cu concentrations were within normal ranges and considered adequate for each species. Liver Cu concentration was more variable in cows and goats compared to pig liver Cu concentrations. Pulmonary artery ${\beta}$-hydroxylproline was higher (p<0.01) in cow and pig than goat. Real Time PCR revealed that goat liver atp7a was positively correlated ($r^2$ = 0.92; p<0.01) to liver Cu concentrations while cow and pig atp7a was not correlated to liver Cu concentration. In the pig, liver atp7a concentration was positively correlated to atp7b ($r^2$ = 0.66; p<0.05). Pulmonary artery Cu concentration was highest in cows ($14.9{\pm}4.7$), intermediate in pigs ($8.9{\pm}3.3$), and lowest in goats ($3.9{\pm}1.1$). Goat pulmonary artery Cu concentration was not correlated to ctr1 concentration, however, atp7a concentration was positively correlated with ctr1 ($r^2$ = 0.90; p<0.01). In cow pulmonary artery, loxl1 concentration was positively correlated to eln mRNA concentration ($r^2$ = 0.91; p<0.02). Pulmonary artery CTR1 protein concentration was positively correlated to pulmonary artery Cu ($r^2$ = 0.85; p = 0.03) concentration while negatively correlated to liver Cu ($r^2$ = -0.79; p<0.04). Pulmonary artery Cu concentration was not correlated to concentration of Cu homeostatic genes in the pig. These data indicate that genes involved in Cu homeostasis (ctr1, atp7A, atp7B, loxl1 and eln) are differently regulated in different species.

Biocontrol of Damping-Off(Rhizoctonia solani) in Cucumber by Trichoderma asperellum T-5 (Trichoderma asperellum T-5를 이용한 오이 모잘록병(Rhizoctonia solani)의 생물학적 제어)

  • Ryu, Ji-Yeon;Jin, Rong-De;Kim, Yong-Woong;Lee, Hyang-Burm;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.185-194
    • /
    • 2006
  • A fungal strain of Trichoderma having strong chitinolytic activity was isolated from field soil enriched with crabshell for several years. Based on 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence analysis and morphological characteristics, the fungus was identified as Trichoderma asperellum and named as Trichoderma asperellum T-5 (TaT-5). The fungus released lytic enzymes such as chitinase and ${\beta}$-1, 3-glucanse, and produced six antifungal substances in chitin broth medium. To demonstrate the protective effect of TaT-5 against damping-off in cucumber plant caused by Rhizoctonia solani, TaT-5 culture broth (TA), chitin medium (CM) and distilled water (DW) were applied to each pot at 10 days after sowing, respectively. Then, the homogenized hyphae of R. solani were infected to each pot at 1 week after TaT-5 inoculation. During experimental period, fresh weight of shoot and root in cucumber plant more increased at TA treatment compared to other treatments. PR-proteins (${\beta}$-1, 3-glucanase and chitinase) activities in cucumber leaves markedly increased at CM and DW treatments, but the activity slightly increased and then decreased at TA treatment at 3 days after infection of R. solani. The activity of PR-proteins activities in cucumber roots at all treatments decreased with time where the degree of decrement was more alleviated at TA treatment than CM and DW. These results suggest that the lytic enzymes (chitinase and ${\beta}$-1, 3-glucanse) and antifungal substances produced by TaT-5 can reduce the pathogenic attack by R. solani in cucumber plants.

Identifying Differentially Expressed Genes and Small Molecule Drugs for Prostate Cancer by a Bioinformatics Strategy

  • Li, Jian;Xu, Ya-Hong;Lu, Yi;Ma, Xiao-Ping;Chen, Ping;Luo, Shun-Wen;Jia, Zhi-Gang;Liu, Yang;Guo, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5281-5286
    • /
    • 2013
  • Purpose: Prostate cancer caused by the abnormal disorderly growth of prostatic acinar cells is the most prevalent cancer of men in western countries. We aimed to screen out differentially expressed genes (DEGs) and explore small molecule drugs for prostate cancer. Materials and Methods: The GSE3824 gene expression profile of prostate cancer was downloaded from Gene Expression Omnibus database which including 21 normal samples and 18 prostate cancer cells. The DEGs were identified by Limma package in R language and gene ontology and pathway enrichment analyses were performed. In addition, potential regulatory microRNAs and the target sites of the transcription factors were screened out based on the molecular signature database. In addition, the DEGs were mapped to the connectivity map database to identify potential small molecule drugs. Results: A total of 6,588 genes were filtered as DEGs between normal and prostate cancer samples. Examples such as ITGB6, ITGB3, ITGAV and ITGA2 may induce prostate cancer through actions on the focal adhesion pathway. Furthermore, the transcription factor, SP1, and its target genes ARHGAP26 and USF1 were identified. The most significant microRNA, MIR-506, was screened and found to regulate genes including ITGB1 and ITGB3. Additionally, small molecules MS-275, 8-azaguanine and pyrvinium were discovered to have the potential to repair the disordered metabolic pathways, abd furthermore to remedy prostate cancer. Conclusions: The results of our analysis bear on the mechanism of prostate cancer and allow screening for small molecular drugs for this cancer. The findings have the potential for future use in the clinic for treatment of prostate cancer.

Discrimination of Bacillus subtilis from Other Bacillus Species Using Specific Oligonucleotide Primers for the Pyruvate Carboxylase and Shikimate Dehydrogenase Genes

  • Lee, Gawon;Heo, Sojeong;Kim, Tao;Na, Hong-Eun;Park, Junghyun;Lee, Eungyo;Lee, Jong-Hoon;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1011-1016
    • /
    • 2022
  • Bacillus subtilis is a useful bacterium in the food industry with applications as a starter strain for fermented food and as a probiotic. However, it is difficult to discriminate B. subtilis from other Bacillus species because of high phenotypic and genetic similarity. In this study, we employed five previously constructed multilocus sequence typing (MLST) methods for the discrimination of B. subtilis from other Bacillus species and all five MLST assays clearly distinguished B. subtilis. Additionally, the 17 housekeeping genes used in the five MLST assays also clearly distinguished B. subtilis. The pyruvate carboxylase (pyrA) and shikimate dehydrogenase (aroE) genes were selected for the discrimination of B. subtilis because of their high number of polymorphic sites and the fact that they displayed the lowest homology among the 17 housekeeping genes. Specific primer sets for the pyrA and aroE genes were designed and PCR products were specifically amplified from B. subtilis, demonstrating the high specificity of the two housekeeping genes for B. subtilis. This species-specific PCR method provides a quick, simple, powerful, and reliable alternative to conventional methods in the detection and identification of B. subtilis.

Genetic Variation and Population Specific Mitochondrial DNA Haplotype Found in the Jeju Native Pig Population (제주재래돼지 집단서 집단특이적 mtDNA Haplotype과 유전적 다양성)

  • Han, S.H.;Cho, I.C.;Lee, C.E.;Lee, S.S.;Kang, S.Y.;Choi, Y.L.;Oh, W.Y.;Sung, P.N.;Ko, S.B.;Oh, M.Y.;Ko, M.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.917-924
    • /
    • 2004
  • Using PCR-RFLP haplotyping for the mitochondrial DNA(mtDNA) fragment containing the NADH dehydrogenase 2 gene(ND2) and three tRNA genes(tRNA-Met, tRNA-Trp and tRNA-Ala), we characterized the genetic diversity of five pig breeds including Jeju native pigs. mtDNA polymorphisms showing distinct cleavage patterns were found in the pig breeds. Two digestion patterns were detected when HaeIII- and Hinfl-RFLP, and four in the Tsp5091-RFLP analyses. Combining the three restriction enzyme digestion patterns found in five different pig breeds, four mtDNA haplotypes were observed and the haplotype frequencies were significantly different by the pig breeds. A monomorphic haplotype, mtWB, was observed in both Korean wild boars and Large White pigs. Both Duroc and Landrace pigs contained two haplotypes suggesting their multiple maternal lineages. Jeju native pig has two haplotypes(mtJN and mtJD). Of these, mtJN is identified as a Jeju native pig specific haplotype. This study suggested that more than two progenitor populations have been taken part in the domestication process of the Jeju native pig population, and/or probably subsequent crossing with other pig breeds from near east Asia. Unlike with our prediction, there was no direct evidence under molecular levels on the maternal introgression of Korean wild boar in the domestication of Jeju native pigs. In conclusion, specificity of mtDNA haplotypes related to pig breeds win be useful for identifying the maternal lineage as wen as constructing the genealogical pedigree in pigs.

miRNA-222 Modulates Differentiation of Mouse Embryonic Stem Cells

  • Ahn, Hee-Jin;Jung, Jee-Eun;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.331-338
    • /
    • 2011
  • MicroRNAs (miRNAs) function as a key regulator of diverse cellular functions. To find out novel miRNAs that promote the differentiation of mouse embryonic stem cells (mESCs), we compared the miRNAs expression profiles of mESCs under self-renewal vs. differentiation states. We noticed that miR-222 was highly expressed during the differentiation of mESCs. Quantitative RT-PCR analysis revealed that expression of miR-222 was up-regulated during the embryonic bodies formation and retinoic acid -dependent differentiation. When miR-222 was suppressed by antogomiR-222, the differentiation of mESCs was delayed compared to control. Self-renewal marker expression or cell proliferation was not affected but the expression of lineage specific marker was suppressed by the treatment of miR-222 inhibitor during the differentiation of mESCs. Taken together, these results suggest that miR-222 functions to promote the differentiation of mESCs by regulating expression of differentiation related genes.

Inhibition of Cell Proliferation and Migration by miR-509-3p That Targets CDK2, Rac1, and PIK3C2A

  • Yoon, Sena;Han, Eunji;Choi, Young-Chul;Kee, Honghwan;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.314-321
    • /
    • 2014
  • CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3'-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.