• Title/Summary/Keyword: rRNA

Search Result 3,649, Processing Time 0.027 seconds

Phylogenetic Diversity and Community Structure of Microbiome Isolated from Sargassum Horneri off the Jeju Island Coast (제주 연안의 괭생이모자반(Sargassum horneri)에서 분리된 세균의 계통학적 다양성 및 군집 구조 분석)

  • Moon, Kyung-Mi;Park, So-Hyun;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1179-1185
    • /
    • 2018
  • Recently, Sargassum horneri, the marine weed inhabiting the shoreline, beach, and littoral sea area, has caused serious damage to intensive aquaculture farms particularly those around Jeju Island, South Korea. The purpose of this study was to investigate the diversity of microorganisms in Sargassum horneri and to provide basic data on ecological problems by identifying microbial functions. A total of 88 isolates were identified by 16S rRNA sequencing. Proteobacteria was the dominant phylum accounting for 88%, including class ${\alpha}-proteobacteria$, six genera, and ten species. The dominating genus, Pseudobacter, accounted for 40% in Pseudorhodobacter, 20% in Paracoccus, and the remaining at 10% each were Rhizobium, Albirhodobacter, Skermanella, and Novosphingobium. Class ${\beta}-proteobactera$ included five genera and ten species. Genus Hydrogenophaga accounted for 50%, while genus Azoarcus accounted for 20%, and the remaining Oxalicibacterium, Duganella, and Xenophilus were 10% each. Class ${\gamma}-proteobacteria$ with 13 genera and 57 species, accounted for 74% in phylum Proteobacteria, 23% in Shewanella, 19% in Cobetia, 12% in Pseudomonas, 4% each in Vibrio and Serratia, and 2% each in Rheinheimera, Raoultella, Pantoea, Acinetobacter, Moraxella, and Psychrobacter genera. In addition, Actinobacteria with two species of Nocardioides genera accounted for 50%, and Bacteroidetes accounted for 33%, with three genera and five species that included Lacihabitans and Mariniflexile. The remaining Dyadobacter, Cellulophaga, and Ferruginibacter genera each accounted for 11%.

Antifungal Activity of Bacillus Subtilis HK2 against Trichothecium Roseum Causing Pink Rot of Melon and White Stain Symptom on Grape (멜론 분홍빛썩음병과 포도 흰얼룩병의 원인균인 Trichothecium Roseum에 대한 Bacillus Subtilis HK2의 항균활성)

  • Oh, Soh-Young;Lee, En-Young;Nam, Ki-Woong;Yoon, Deok-Hoon
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • Pink Rot on melon and White Stain Symptom on grape are caused by Trichothecium roseum, one of the most important diseases of grape and melon. These diseases have been occurred in national-wide in Korea and causes irreversible damage on the grape and the melon at harvest season. This research presents the evaluation of the capacity of Bacillus subtillis HK2 to protect both melon and grape against T. reseum and establishes its role as a biocontrol agent. In this study, we isolated a Bacillus strain HK2 from rhizosphere soil, identified it as Bacillus subtillis by 16S rRNA analysis and demonstrated its antifungal activity against T. roseum. Under I-plate assay it was observed that the effect of hyphal growth inhibition was not due to production of volatile compounds. The optimum culture condition of HK2 was found at 30℃ and initial pH of 7.0. Application of HK2 culture suspension reduced 90.2% of white stain symptom on grape as compared to control, resulting in greater protection to grape against T. roseum infestation. Butanol extract of HK2 culture purified using flash column chromatography. The antifungal material was a polar substance as it showed antifungal activity in polar elute. Therefore, our results indicated a clear potential of B. subtilis HK2 to be used for biocontrol of Pink rot in melon and white stain symptom on grape caused by T. roseum.

Molecular Analysis of Bacterial Communities Distributed in Sea Water of Whitening Areas of Jeju Coast (제주연안 갯녹음(백화) 지역의 해수에 분포하는 세균군의 분자생물학적 분석)

  • 강형일;강봉조;김미란;윤병준;이동헌;오덕철
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • In this study, the bacterial communities distributed in sea water of the whitening areas of Gangjeong and Seongsan, Jeju-do have been analysed using the PCR amplification of 16S rRNA to obtain fundamental data and information on relationship of the whitening phenomenon and microbial ecosystem. In Gangjeong, diverse bacteria such as Alcanivorax, Paracoccus, Damselae, Pseudomonas, Rhodowlum, Silicibacter, Suiftobacter, and Roseobacter have been found, and Alcanivorax was the most abundant clone. The most abundant clone from Seongsan was Pseudomonas, of which Pseudomonas tolaasii and Pseudomonas mandeli were most abundantly occurred in the frequency of approx44% and 24%, respectively. Approx4% of the bacterial clones closest to Verrucomicrobiales and other unidentified clones were also fecund in Seongsan, suggesting there is a great discrepancy between bacterial communities from the whitening areas of Seongsan and Gangjeong. The mean temperature, chlorine concentration, pH, and dissolved oxygen (DO) of the sea water of Gangieong and Seongsan in August of 2001 (sampling period) was $27^{\circ}C$~$27.5^{\circ}C$, 30.24~30.60%, pH 8.23~8.36,7 .20~7.28 mg/ι, suggesting other environmental factors except far the factors mentioned above might result in difference of bacterial communities distributed in both areas.

Analysis of Microbial Community during the Anaerobic Dechlorination of PCE/TCE by DGGE (DGGE를 이용한 PCE 및 TCE의 혐기적 탈염소화 군집의 미생물 군집분석)

  • Kim, Byung-Hyuk;Cho, Dae-Hyun;Sung, Youl-Boong;Ahn, Chi-Youg;Yoon, Byung-Dae;Koh, Sung-Cheol;Oh, Hee-Mock;Kim, Hee-Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.448-454
    • /
    • 2010
  • This study investigated the effect of PCE and TCE as electron acceptors on the bacterial composition of dechlorinating communities. The enrichment cultures reductively dechlorinating PCE and TCE were developed from three environment samples using acetate as electron donor. The cultures were prepared by sequential enrichment, which was seeded with sediment and dredged soil. Denatured gradient gel electrophresis (DGGE) of 16S rRNA gene fragment was used to compare the microbial communities of these three enrichment cultures. After incubation for 4 weeks, the removal efficiencies of PCE and TCE were highest from Yeocheon site (87.37% and 84.46%, respectively). PCE and TCE as electron acceptors affected the bacterial diversity and community profiles in the enrichment cultures. DGGE analysis showed that the dominant bacteria in PCE and TCE enrichment were belonged to Clostridium sp., Desulfotomaculum sp., and uncultured bacteria.

Characterization of Starch-Utilizing Yeast Saccharomycopsis fibuligera Isolated from Nuruk (누룩으로부터 분리된 전분대사 효모 Saccharomycopsis fibuligera 균주의 생육특성)

  • Choi, Da-Hye;Park, Eun-Hee;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.407-412
    • /
    • 2014
  • A number of Saccharomycopsis fibuligera strains that can hydrolyse and utilize starch as a carbon source were isolated from nuruk, a traditional Korean starter for rice wine fermentation, and their specific growth rates on starch-containing medium were compared to choose the prominent strain. S. fibuligera strain MBY1320 showed a higher growth rate at $42^{\circ}C$ than that of strain S. fibuligera KCTC7806, indicating that S. fibuligera MBY1320 has more thermo-tolerant machinery for starch hydrolysis and utilization than KCTC7806. Although the activity of ${\alpha}$-amylase at $30^{\circ}C$ was significantly lower for S. fibuligera MBY1320 than KCTC7806 (3,812.5 U vs. 14,878.5 U), S. fibuligera MBY1320 showed a much higher glucoamylase activity at $42^{\circ}C$ than S. fibuligera KCTC7806 (5,048.9 U vs. 13,152.3 U). Thus, a new S. fibuligera strain, with a higher starch-hydrolysing activity at elevated temperatures than that of other types of strain, this study reports.

Characterization of Homocysteine ${\gamma}$-Lyase from Submerged and Solid Cultures of Aspergillus fumigatus ASH (JX006238)

  • El-Sayed, Ashraf S.;Khalaf, Salwa A.;Aziz, Hani A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.499-510
    • /
    • 2013
  • Among 25 isolates, Aspergillus fumigatus ASH (JX006238) was identified as a potent producer of homocysteine ${\gamma}$-lyase. The nutritional requirements to maximize the enzyme yield were optimized under submerged (SF) and solid-state fermentation (SSF) conditions, resulting in a 5.2- and 2.3-fold increase, respectively, after the last purification step. The enzyme exhibited a single homogenous band of 50 kDa on SDS-PAGE, along with an optimum pH of 7.8 and pH stability range of 6.5 to 7.8. It also showed a pI of 5.0, as detected by pH precipitation with no glycosyl residues. The highest enzyme activity was obtained at $37-40^{\circ}C$, with a $T_m$ value of $70.1^{\circ}C$. The enzyme showed clear catalytic and thermal stability below $40^{\circ}C$, with $T_{1/2}$ values of 18.1, 9.9, 5.9, 3.3, and 1.9 h at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. Additionally, the enzyme $K_r$ values were 0.002, 0.054, 0.097, 0.184, and 0.341 $S^{-1}$ at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. The enzyme displayed a strong affinity to homocysteine, followed by methionine and cysteine when compared with non-S amino acids, confirming its potency against homocysteinuria-related diseases, and as an anti-cardiovascular agent and a specific biosensor for homocysteinuria. The enzyme showed its maximum affinity for homocysteine ($K_m$ 2.46 mM, $K_{cat}\;1.39{\times}10^{-3}\;s^{-1}$), methionine ($K_m$ 4.1 mM, $K_{cat}\;0.97{\times}10^{-3}\;s^{-1}$), and cysteine ($K_m$ 4.9 m M, $K_{cat}\;0.77{\times}10^{-3}\;s^{-1}$). The enzyme was also strongly inhibited by hydroxylamine and DDT, confirming its pyridoxal 5'-phosphate (PLP) identity, yet not inhibited by EDTA. In vivo, using Swiss Albino mice, the enzyme showed no detectable negative effects on platelet aggregation, the RBC number, aspartate aminotransferase, alanine aminotransferase, or creatinine titer when compared with negative controls.

The Characteristics of Tetrachloroethylene (PCE) Degradation by Pseudomonas putida BJ10 (Pseudomonas putida BJ10의 Tetrachloroethylene (PCE) 분해 특성)

  • Choi, Myung-Hoon;Kim, Jai-Soo;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • In this study, biological PCE degradation by using a BTEX degrading bacterium, named BJ10, under aerobic conditions in the presence of toluene was examined. According to morphological, physiological characteristics, 16S rDNA sequencing and fatty acid analysis, BJ10 was classified as Pseudomonas putida. As a result of biological PCE degradation at low PCE concentrations (5 mg/L), PCE removal efficiency by P. putida BJ10 was 52.8% for 10 days, and PCE removal rate was 5.9 nmol/hr (toluene concentration 50 mg/L, initial cell density 1.0 g (wet weight)/L, temperature 30, pH 7 and DO $3.0{\sim}4.2\;mg/L$. At high PCE concentration (100 mg/L), PCE removal efficiency by P. putida BJ10 was 20.3% for 10 days, and PCE removal rate was 46.0 nmol/hr under the same conditions. The effects of various toluene concentration (5, 25, 50, 100, 200 mg/L) on PCE degradation were examined under the same incubation conditions. The highest PCE removal efficiency of PCE was 57.0% in the initial PCE concentration of 10 mg/L in the presence of 200 mg/L toluene for 10 days. Furthermore, the additional injection of 5.5 mg/L PCE (total 7.6 mg/L) made 63.0% degradation for 8 days in the presence of 50 mg/L toluene under the same conditions. Its removal rate was 13.5 nmol/hr, which was better than the initial removal rate (8.1 nmol/hr).

Effect of Vigna angularis on Toll-like Receptor Activation and Pro-inflammatory Cytokine Production (적소두 추출물이 톨유사수용체 활성 및 염증유발 사이토카인의 생성에 미치는 영향)

  • Kim, Mi-Hwa;Jeoung, See-Hwa;Lee, Seung-Woong;Kim, Hyun-Kyu;Park, Chan-Sun;Jeon, Byung-Hun;Oh, Hyun-Mee;Rho, Mun-Chual
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.511-518
    • /
    • 2012
  • The mechanisms of Toll-like receptor (TLR) signaling have been the focus of extensive studies because TLRs are the target of therapeutic intervention on multiple diseases. In this study, we investigated the inhibitory potential of Vigna angularis (azuki bean) on the TLR signaling. The effect of Vigna angularis extract (JSD) on TLR activation was investigated by assessing NF-${\kappa}B$ and AP-1 inducible secreted embryonic alkaline phosphatase (SEAP) activity. JSD significantly inhibited SEAP activity induced by poly I:C (TLR3 ligand) and poly I (TLR7 ligand) in a dose-dependent manner at concentration below 100 ${\mu}g/ml$ with no sign of cytotoxicity. Pretreatment of JSD markedly suppressed mRNA expressions of pro-inflammatory cytokines and adhesive molecules such as TNF-${\alpha}$, IL-6, RANTES, MCP-1 and ICAM-1 induced by TLR ligands. It also diminished the phosphorylation of $I{\kappa}B$ kinase and $I{\kappa}B$, and followed by $I{\kappa}B$-mediated nuclear translocation of p50, p65, and phosphorylation of p38, JNK, and IRF signaling pathway. In conclusion, our results suggest that Vigna angularis has inhibitory activity on TLR-3 and -7 signaling and it can be further developed as a remedy in curing TLR-related multiple diseases.

Purification of Methioninase from Pseudomonas putida and Its Effect on the Uptake of ^11C-Methionine in Vivo. (Pseudomonas putida 유래 Methioninase의 정제 및 생체내 ^11C-Methionine 섭취에 미치는 영향)

  • 변상성;박귀근
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.377-382
    • /
    • 2003
  • Purification of methioninase resulted in a yield of 69%, and SDS-PAGE analysis of the purified product revealed a single band of approximately 43 kDa in molecular weight. in vitro experiments with cancer cells incubated in methionine-free media demonstrated an increase in $^{11}$ C-methionine uptake to 25.8$\pm$1.1% at 6 hr, 31.8$\pm$0.8% at 24 hr, and 62.2$\pm$0.6% at 48hr, compared to controls. Treatment of the cancer cells with purified methioninase showed no decrease in survival after a 2 hr incubation with 0.01 U/ml, but survival of RR1022 cells decreased 30% after 24 to 48 hr incubation. SKOV-3 cells showed a 5% and 14% decrease in survival with 0.1 and 1 U/ml methioninase after 24 hr. After 48hr survival decreased 15% and 24% with 0.1 and 1 U/ml methioninase. Measurements of $^{11}$ C-methionine uptake in RR1022 cells demonstrated no change at 2 hr, but a 13.7$\pm$4.7% and 40.7$\pm$2.6% increase in uptake at 24 and 48 hr, respectively. SKOV-3 cells also showed no change at 2 hr, but had a 17.7$\pm$7.2% and 38.9$\pm$4.9% increase in $^{11}$ C-methionine uptake after 24 hr and 48 hr treatment with methioninase, respectively. $^{11}$ C-methionine PET imaging revealed clear visualization of both the tumors and contralateral infectious lesions. Administration of rMET appeared to result in a slight increase in tumor:nontumor contrast on $^{11}$ C-methionine PET images. Injection of purified methioninase also produced PET images where tumor uptake was higher than that of infectious lesions.

Molecular and Ecological Analyses of Microbial Community Structures in Biofilms of a Full-Scale Aerated Up-Flow Biobead Process

  • Ju, Dong-Hun;Choi, Min-Kyung;Ahn, Jae-Hyung;Kim, Mi-Hwa;Cho, Jae-Chang;Kim, Tae-Sung;Kim, Tae-San;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.253-261
    • /
    • 2007
  • Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.