Browse > Article
http://dx.doi.org/10.4014/jmb.1208.08070

Characterization of Homocysteine ${\gamma}$-Lyase from Submerged and Solid Cultures of Aspergillus fumigatus ASH (JX006238)  

El-Sayed, Ashraf S. (Microbiology Department, Faculty of Science, Zagazig University)
Khalaf, Salwa A. (Microbiology Department, Faculty of Science, Zagazig University)
Aziz, Hani A. (Microbiology Department, Faculty of Science, Zagazig University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 499-510 More about this Journal
Abstract
Among 25 isolates, Aspergillus fumigatus ASH (JX006238) was identified as a potent producer of homocysteine ${\gamma}$-lyase. The nutritional requirements to maximize the enzyme yield were optimized under submerged (SF) and solid-state fermentation (SSF) conditions, resulting in a 5.2- and 2.3-fold increase, respectively, after the last purification step. The enzyme exhibited a single homogenous band of 50 kDa on SDS-PAGE, along with an optimum pH of 7.8 and pH stability range of 6.5 to 7.8. It also showed a pI of 5.0, as detected by pH precipitation with no glycosyl residues. The highest enzyme activity was obtained at $37-40^{\circ}C$, with a $T_m$ value of $70.1^{\circ}C$. The enzyme showed clear catalytic and thermal stability below $40^{\circ}C$, with $T_{1/2}$ values of 18.1, 9.9, 5.9, 3.3, and 1.9 h at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. Additionally, the enzyme $K_r$ values were 0.002, 0.054, 0.097, 0.184, and 0.341 $S^{-1}$ at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. The enzyme displayed a strong affinity to homocysteine, followed by methionine and cysteine when compared with non-S amino acids, confirming its potency against homocysteinuria-related diseases, and as an anti-cardiovascular agent and a specific biosensor for homocysteinuria. The enzyme showed its maximum affinity for homocysteine ($K_m$ 2.46 mM, $K_{cat}\;1.39{\times}10^{-3}\;s^{-1}$), methionine ($K_m$ 4.1 mM, $K_{cat}\;0.97{\times}10^{-3}\;s^{-1}$), and cysteine ($K_m$ 4.9 m M, $K_{cat}\;0.77{\times}10^{-3}\;s^{-1}$). The enzyme was also strongly inhibited by hydroxylamine and DDT, confirming its pyridoxal 5'-phosphate (PLP) identity, yet not inhibited by EDTA. In vivo, using Swiss Albino mice, the enzyme showed no detectable negative effects on platelet aggregation, the RBC number, aspartate aminotransferase, alanine aminotransferase, or creatinine titer when compared with negative controls.
Keywords
Aspergillus fumigatus; 18S-28S rRNA; homocysteine ${\gamma}$-lyase; biochemical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Caddick, M. X., D. Peters, and A. Platt. 1994. Nitrogen regulation in fungi. Antoine van Leeuwenhoek 65: 169-177.   DOI
2 Lockwood, B. and G. Coombs. 1991. Purification and characterization of methionine $\gamma$-lyase from Trichomonas vaginalis. Biochem. J. 279: 675-682.
3 Morris, M. S. 2003. Homocysteine and Alzheimer's disease. Lancet Neurol. 2: 425-428.   DOI   ScienceOn
4 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
5 Merricks, D. L. and R. L. Salsbury. 1974. Involvement of vitamin B6 in the dethiomethylation of methionine by rumen microorganisms. J. Appl. Microbiol. 28: 106-111.
6 Monreal, J. and E. Reese. 1969. The chitinase of Serratia marcescens. Can. J. Microbiol. 15: 689-696.   DOI   ScienceOn
7 Moubasher, A. H. 1993. Soil Fungi in Qatar and Other Arab Countries. Center of Scientific and Applied Research, University of Qatar, Qatar.
8 Mrtinez-Cuesta, M. C., C. Pelaez, J. Eagles, M. J. Gasson, T. Requena, and S. B. Hanniffy. 2006. YtjE from Lactococcus lactis IL1403 is a C-S lyase with $\alpha$, $\gamma$-elimination activity towards methionine. Appl. Environ. Microbiol. 72: 4878-4884.   DOI   ScienceOn
9 Mudd, S. H., F. Skovby, H. L. Levy, K. D. Pettigerw, B. Wilcken, R. E. Pyeritz, et al. 1985. The natural history of homocysteinuria due to cystathionine $\beta$-synthase deficiency. Am. J. Hum. Genet. 37: 1-31.
10 Nakayama, T., N. Esaki, H. Tanaka, and K. Soda. 1988. Chemical modifications of cysteine residues of L-methionine $\gamma$- lyase. Agric. Biol. Chem. 52: 177-183.   DOI
11 Pandey, A., C. R. Soccol, J. A. Rodriguez-Leon, and P. Nigam. 2001. Solid State Fermentation in Biotechnology. A siathech. Inc, New Delhi.
12 Refsum, H. 1998. Homocysteine and Cardiovascular disease. Annu. Rev. Med. 49: 31-62.   DOI   ScienceOn
13 Percudani, R. and A. Peracchi. 2003. Agenomic overview of pyridoxal-phosphate dependent enzymes. EMBO Rep. 4: 850-854.   DOI   ScienceOn
14 Suzuki, T., S. Akiyama, S. Fujimoto, M. Ishikawa, Y. Nakao, and H. Fukuda. 1976. The aconitase of yeasts. IV. Studies of iron and sulfur in yeast aconitase. J. Biochem. 80: 199-804.
15 Takakura, T., T. Ito, S. Yagi, Y. Notsu, T. Itakura, T. Nakamura, et al. 2006. High-level expression and bulk crystallization of recombinant L-methionine $\gamma$-lyase, an anticancer agent. Appl. Microbiol. Biotechnol. 70: 183-192.   DOI   ScienceOn
16 Tanaka, H., N. Esaki, T. Yamamoto, and K. Soda. 1976. Purification and properties of methioninase from Pseudomonas ovalis. FEBS Lett. 66: 307-311.   DOI   ScienceOn
17 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acid Res. 22: 4673-4680.   DOI   ScienceOn
18 Trinder, P. 1969. Determination of blood glucose using an oxidase-peroxidase system with non-carcinogenic chromogen. J. Clin. Pathol. 22: 158-161.   DOI
19 Wei, X. L., J. F. Wei, T. Li, L. Y. Qiao, Y. L. Liu, T. Huang, and S. H. He. 2007. Purification, characterization and potent lung lesion activity of an L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom. Toxicon 50: 1126-1139.   DOI   ScienceOn
20 Yano, T., M. Ito, K. Tomita, K. Kumagai, and T. Tochikura. 1988. Purification and properties of glutaminase from Aspergillus oryzae. J. Ferment. Technol. 66: 137-143.   DOI   ScienceOn
21 Zhao, W.-F., X.-H. Ma, X.-M. Jia, Y. Ma, X. Li, K-P. Guo, et al. 2008. Isolation of a homocysteine $\gamma$-lyase producing bacterium and study of its enzyme production conditions. J. Appl. Microbiol. 104: 1042-1050.   DOI   ScienceOn
22 Carmel, R. and D. W. Jacobsen. 2001. Homocysteine in Health and Disease. Cambridge University Press.
23 Abdel-Azeem, A. M. 2010. The history, fungal biodiversity, conservation and future perspectives for mycology in Egypt. IMA Fungus 1: 123-142.   DOI
24 Benko, P. V., T. C. Wood, and I. H. Segel. 1967. Specificity and regulation of the methionine transport in filamentous fungi. Arch. Biochem. Biophys. 122: 783-804.   DOI
25 Beruter, J., J.-P. Colombo, and C. Bachmann. 1978. Purification and properties of arginase from human liver and erythrocytes. Biochem. J. 175: 449-454.
26 El-Sayed, A. S. A. 2010. Microbial L-methioninase, molecular characterization, and therapeutic applications. Appl. Microbiol. Biotechnol. 86: 445-467.   DOI   ScienceOn
27 De Bree, A., M. Verschuren, D. Kromhout, L. A. Kluijtmans, and H. J. Blom. 2002. Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol. Rev. 54: 599-618.   DOI   ScienceOn
28 Dias, B. and B. Weimer. 1998. Purification and characterization of L-methionine γ-lyase from Brevibacterium linens BL2. Appl. Environ. Microbiol. 64: 3327-3331.
29 dos Passos, J. B., M. Vanhalewyn, and R. L. Brandao. 1992. Glucose induced activation of plasma membrane H(+)-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation, and the initiation of glycolysis. Biochem. Biophys. Acta 1136: 57-67.   DOI   ScienceOn
30 El-Sayed, A. S. A. 2009. L-Methioninase production by Aspergillus flavipes under solid-state fermentation. J. Basic Microbiol. 49: 331-341.   DOI   ScienceOn
31 El-Sayed, A. S. A. 2011. Purification and characterization of a new L-methioninase from Aspergillus flavipes under solid state fermentation. J. Microbiol. 49: 130-140.   DOI
32 El-Sayed, A. S. A., A. A. Shindia, and Y. Zaher. 2012. L-Amino acid oxidase from filamentous fungi: Screening and Optimization. Ann. Microbiol. 62: 773-784.   DOI
33 Graham, I. M., L. E. Daly, H. M. Refsum, K. Robinson, L.E. Brattstrom, P. M. Ueland, et al. 1997. Plasma homocysteine as a risk factor for vascular disease. JAMA 277: 1775-1781.   DOI   ScienceOn
34 Faleev, N. G., M. V. Troitskaya, E. A. Paskonova, M. B. Saporovskaya, and V. M. Belikov. 1996. L-Methionine $\gamma$-lyase in Citrobacter intermedius cells. Stereo chemical requirements with respect to the thiol structure. Enzyme Microb. Technol. 19: 590-593.   DOI   ScienceOn
35 Garraway, M. O. and R. C. Evans 1984. Fungal Nutrition and Physiology. Wiley-Interscience.
36 Ito, S., T. Nakamura, and Y. Eguchi, 1976. Purification and characterization of methioninase from Pseudomonas putida. J. Biochem. 79: 1263-1272.
37 Green, S. M., E. Eisenstein, P. McPhie, and P. Hensley. 1990. The purification and characterization of arginase from Saccharomyces cerevisiae. J. Biol. Chem. 265: 1601-1607.
38 Han, Q., M. Lenz, Y. Tan, M. Xu, X. Sun, X. Tan, et al. 1998. High expression, purification and properties of recombinant homocysteine $\alpha$, $\gamma$-lyase. Protein Expr. Purif. 14: 267-274.   DOI   ScienceOn
39 Jennings, D. H. 1995. The Physiology of Fungal Nutrition, 1st Ed. Cambridge University Press, Cambridge
40 Kebeish, R. M. and A. S. A. El-Sayed. 2012. Morphological and molecular characterization of L-methioninase-producing Aspergilli. Afr. J. Biotechnol. [In Press].
41 Khalaf, S. A. and A. S. A. El-Sayed, 2009. L-Methioninase production by filamentous fungi: Screening and optimization under submerged conditions. Curr. Microbiol. 58: 219-226.   DOI   ScienceOn
42 Killham, K., N. D. Lindley, and M. Wainwright. 1981. Inorganic sulfur oxidation by Aureobasidium pullulans. Appl. Environ. Microbiol. 42: 629-631.
43 Kudou, D., S. Misaki, M. Yamashita, T. Tamura, T. Takakura, T. Yoshioka, et al. 2007. Structure of the antitumor enzyme Lmethionine $\gamma$-lyase from Pseudomonas putida at 1.8 A resolution. J. Biochem. 141: 535-544.   DOI   ScienceOn
44 Ruiz-Herrera, J. and R. Starkey. 1970. Dissimilation of methionine by Achromobacter starkeyi. J. Bacteriol. 104: 1286-1293.
45 Pratt, D. S. and M. M. Kaplan. 2000. Evaluation of abnormal liver enzyme results in asymptomatic patients. N. Engl. J. Med. 342: 1266-1271.   DOI   ScienceOn
46 Raper, K. B. and D. I. Fennell. 1965. The Genus Aspergillus. The Williams and Wilkins Company, Baltimore.
47 Ruiz-Herrera, J. and R. L. Starkey. 1969. Dissimilation of methionine by a demethiolase of Aspergillus species. J. Bacteriol. 99: 764-770.
48 Sato, D., W. Yamagata, S. Harada, and T. Nozaki. 2008. Kinetic characterization of methionine $\gamma$-lyase from the enteric protozoan parasite Entamoeba histolytica against physiological substrates and trifluoromethionine, a promising lead compound against amoebiasis. FEBS J. 275: 548-560.   DOI   ScienceOn
49 Schuh, S., D. S. Rosenblatt, and B. A. Cooper. 1984. Homocysteinuria and megalo-blastic anemia responsive to vitamin B12 therapy. Nat. Eng. J. Med. 310: 686-690.
50 Sharma, M., B. S. Chadha, M. Kaur, S. K. Ghatora, and H. S. Saini. 2007 Molecular characterization of multiple xylanase producing thermophilic/thermotolerant fungi isolated from composting materials. Lett. Appl. Microbiol. 46: 526-535.
51 Skye, G. E. and H. Segel. 1970. Independent regulation of cysteine and cysteine transport in Penicillium chrysogenum. Arch. Biochem. Biophys. 138: 306-318.   DOI   ScienceOn
52 Stanger, O. 2004. The potential role of homocysteine in percutaneous coronary interventions (PCI): Review of current evidence and plausibility of action. Cell Mol. Biol. 50: 953-988.
53 Tanaka, H., N. Esaki, and K. Soda. 1977. Properties of Lmethionine $\gamma$-lyase from Pseudomonas ovalis. Biochemistry 16: 100-106.   DOI   ScienceOn
54 Sun, X., Z. Yang, S. Li, Y. Tan, N. Zhang, X. Wang, et al. 2003. In vivo efficiency of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5-phosphate supplementation. Cancer Res. 63: 8377-8383.