• Title/Summary/Keyword: quinone

Search Result 443, Processing Time 0.022 seconds

Effects of Acori Graminei Rhizoma Aqua-acupunture Solution(AGRAS) on Induction of Cancer Chemopreventive Enzymes (석창포(石菖蒲) 약침액(藥鍼液)의 암(癌) 예방(豫防) 관련 효소 유도 효과)

  • Roh Dong-Il;Lim Jong-Kook
    • Korean Journal of Acupuncture
    • /
    • v.19 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • Induction of phase II enzymes such as quinone reductase (QR) and glutathione S-transferase (GST) is considered a major mechanism of protection against initiation of carcinogenesis. The present study was performed to evaluate the chemopreventive activity of Acori Graminei Rhizoma aqua-acupuncture solution (AGRAS) and Acori Graminei Rhizoma water-extracted solution (AGRWS) by measuring the induction of phase II enzymes. AGRAS and AGRWS are potent inducers of quinone reductase activity in murine hepatoma Hepa1c1c7 cells. The levels of GSH and GST was increased sightly with AGRAS and AGRWS. These results suggest that AGRAS and AGRWS may act as blocking agents against carcinogenesis by induction of phase II enzymes.

  • PDF

Stabilization of Tyrosinase for Catechol Production (Catechol생산을 위한 Tyrosinase의 안정화)

  • 박종현;김용환유영제이윤식
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.525-531
    • /
    • 1994
  • Tyrosinase has two types of enzymatic activities, cresolase catalyzing the hydroxylation of monophenol and catecholase catalyzing the oxidation of o-phenol. Gradual inactivation of the enzyme during the reaction is a barrier to be overcome for the commercial application of the enzyme. Tyrosinase was stabilized by modifying the lysine residue of the enzyme using glutaraldehyde. In addition to that, tyrosinase was also stabilized by adapting the continuous reactor system. In packed bed reactor quinone could be easily removed, so the stability of tyrosinase increased. Borate buffer retarded the reaction rate of catechol to quinone and consequently decreased the tyroslnase inactivation. Tyrosinase immobilizer on controlled pore glass showed significantly enhanced stability in a packed-bed reactor.

  • PDF

Induction of Glutathione S-transferase and NAD(P)H:Quinone Reductase by Astragali Radix Aqua-acupuncture Solution (황기(黃耆) 약침액(藥鍼液)의 Glutathione S-transferase 와 NAD(P)H: Quinone Reductase 유도)

  • Ryu Jun-Seon;Lim Jong-Kook
    • Korean Journal of Acupuncture
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • Induction of phase II enzymes such as quinone reductase (QR) or glutathione S-transferase (GST) is considered a major mechanism of protection against initiation of carcingenesis. This study was desinged to investigate the potential of Astragali Radix Aqua-acupuncture Solution (ARAS) to induce phase II enzymes and glutathione (GSH) in murine hepatoma cells grown in microtiter plate wells. ARAS was potent inducers of QR activity. ARAS was induced about 2.6-fold at concentration of $5{\times}$. In addition, GST activity was increased with ARAS. GSH levels were increased about 1.2-fold with ARAS at concentration of $0.1{\times}$. These results suggested that ARAS may act as blocking agents against carcinogenesis by induction of phase II marker enzymes.

  • PDF

Menadione-induced Cytotoxicity in Rat Platelets: Absence of the Detoxifying Enzyme, Quinone Reductase

  • Kim, Kyung-Ah;Kim, Mee-Jeong;Ryu, Chung-Kyu;Chang, Moon-Jeong;Chung, Jin-Ho
    • Archives of Pharmacal Research
    • /
    • v.18 no.4
    • /
    • pp.256-261
    • /
    • 1995
  • The elevation of intracellular $Ca^{2+}$ in various tissue through oxidative stress induced by menadione has been well documented. Increase of $Ca^{2+}$ level inplatelets results in aggreaction of patelets. To test the hypothesis that menadione-induced $Ca^{2+}$ elevations can play a role in platelet aggregation, we have studied the effect of menadione on aggragation of platelets isolated from female rats. Treatment with menadione to platelet rich plasma (PRP), which proved to be 60% as determined by aggregometry. however, exposure of PRP to menadione leads to a loss of cell viability, as measured by lactae dehydrogenase (LDH) leakage, suggesting that menadione might induce cell lysis rather than aggregation of platelets. Turbidty changes induced by menadione were unaffected by addition ofl dicoumarol, which is a quinone reducellular factions of patelets. These data, which indicate an absence of the QR detoxifying pathway, suggest that platelets may be more susceptible to menadione-induced cytotoxicity than certain other cell, as hepatocytes.

  • PDF

HQNO-sensitive NADH:Quinone Oxidoreductase of Bacillus cereus KCTC 3674

  • Kang, Ji-Won;Kim, Young-Jae
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.53-57
    • /
    • 2007
  • The enzymatic properties of NADH:quinone oxidoreductase were examined in Triton X-100 extracts of Bacillus cereus membranes by using the artificial electron acceptors ubiquinone-1 and menadione. Membranes were prepared from B. cereus KCTC 3674 grown aerobically on a complex medium and oxidized with NADH exclusively, whereas deamino-NADH was determined to be poorly oxidized. The NADH oxidase activity was lost completely by solubilization of the membranes with Triton X-100. However, by using the artificial electron acceptors ubiquinone-1 and menadione, NADH oxidation could be observed. The activities of NADH:ubiquinone-1 and NADH:menadione oxidoreductase were enhanced approximately 8-fold and 4-fold, respectively, from the Triton X-100 extracted membranes. The maximum activity of FAD-dependent NADH:ubiquinone-1 oxidoreductase was obtained at about pH 6.0 in the presence of 0.1M NaCl, while the maximum activity of FAD-dependent NADH:menadione oxidoreductase was obtained at about pH 8.0 in the presence of 0.1M NaCl. The activities of the NADH:ubiquinone-1 and NADH:menadione oxidoreductase were very resistant to such respiratory chain inhibitors as rotenone, capsaicin, and $AgNO_3$, whereas these activities were sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Based on these results, we suggest that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 possesses an HQNO-sensitive NADH:quinone oxidoreductase that lacks an energy coupling site containing FAD as a cofactor.

Synthesis and in vitro Antitumor Activity of lsoazamitosene and lsoiminoazamitosene Derivatives

  • Ahn, Chan-Mug;Kim, Soo-Kie
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.535-542
    • /
    • 1996
  • Seven isoazamitosene derivatives, mitomycin analogues, were synthesized and tested for cytotoxicities against leukemia and gastric cancer cell lines. Preparation of a pyrrolo[1, 2-a]benzimidazole (3) (azamitosene ring system) was completed by utilizing the Lewis acid-catalized cyclization, with .omicron.-chloronitrotoluene as the starting material. Nitration of 3 produced a mixtue of two isomers (5-nitro isomer (4) and 7-nitro isomer (5)) in product ratio of 36 : 52. 4 was directly converted into quinone (7) by reduction and Fremy oxidaton. Finally, quinone derivatives (8, 9, 10, and 11) were synthesized by 1, 4-addition of 7 with cyclic secondary amines. From above-mentioned 5, 8-nitro compound (15) was prepared in 4 steps. At pH 3, Fremy oxidation of 15 produced quinone (16), whereas iminoquinone derivatives (17a and 17b) at pH 7. Isoazamitosene derivatives (8, 9, 10, and 11), containing cyclic amino groups at the 7-position, showed potent cytotoxicity on P388, SNU-1, and KHH tumor cell lines. Among them, 8 had stronger cytotoxicity against SNU-1 cell line than mitomycin and adriamycin. Considering these results, isoazamitosene derivatives may had unique cytotoxicity profiles. However, isoiminoazamitosene derivatives (17a and 17b) revealed very weak cytotoxicity.

  • PDF

Microbial Community Structure and Treatment Characteristics of Domestic Wastewater in the Intermittently Aerated Membrane Bioreactor (간헐포기MBR공정에서의 하수처리성능과 미생물의 군집구조해석)

  • Lim, Byung-Ran;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.679-685
    • /
    • 2002
  • The objective of this study was investigated for the microbial community structure and treatment performance of domestic wastewater in lab-scale submerged membrane bioreactor operated with anoxic-oxic cycles. Respiratory quinone profiles were applied as tools for identifying different bacterial populations. The cycle time program of bioreactor was control under anoxic/oxic of 60/90 minutes with an hydraulic retention time of 8.4 hrs. The average $COD_{Cr}$ removal efficiency of domestic wastewater was as high as 93%. The results showed complete nitrification of $NH_4^+$-N generated during oxic period and up to 50% of the total nitrogen could be denitrified. The dominant quinone types of suspended microorganisms in bioreactor were ubiquinone (UQ)-8, -10, followed by menaquinone (MK)-6, and MK-7 for anoxic period, but those for oxic period were UQ-8, MK-6, followed by UQ-10 and MK-7. The microbial diversities of bioreactor at anoxic and oxic periods, calculated based on the composition of all quinones were 10.4 and 12.2-11.8, respectively. The experimental results showed that the microbial community structure in the submerged membrane bioreactor treating domestic wastewater was slightly affected by intermittent aeration.

Computational screening of electroactive indolequinone derivatives as high-performance active materials for aqueous redox flow batteries

  • Han, Young-Kyu;Jin, Chang-Soo
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1507-1512
    • /
    • 2018
  • The development of an organic-based aqueous redox flow battery (RFB) using quinone as an electroactive material has attracted great attention recently. This is because this battery is inexpensive, produces high energy density, and is environment friendly in stationary electrical energy storage applications. Herein, we investigate the redox potentials and solubilities of indole-5,6-quinone and indole-4,7-quinone derivatives in terms of the substituent effects of functional groups using theoretical calculations. Our results indicate that full-site substituted derivatives of indolequinone are more useful as active materials compared to single-site substituted derivatives. In particular, our calculations reveal that the substitution of $-PO_3H_2$ and $-SO_3H$ functional groups with multiple polar bonds is very effective in increasing the activity of the aqueous RFB. As a strategy to overcome the limitation that the aqueous solubility is intrinsically low because they are organic molecules, we suggest the substitution of functional groups with multiple polar bonds to the backbones of active organic materials. Among 180 indolequinone derivatives, 17 candidates that meet the redox potential standards ($${\leq_-}0.2V$$ or $${\geq_-}0.9V$$) and eight candidates with solubility exceeding 2 mol/L are identified. Three indolequinone derivatives that satisfy both conditions are finally presented as promising electroactive candidates for an aqueous RFB.

Quinone Reductase Inductive Activity and Growth Inhibitory Effect against Hepatoma Cell of Oriental Melon Extract (참외 추출물의 Quinone Reductase 유도활성 및 간암세포 증식 억제효과)

  • Kim, Hye-Suk;Ku, Kang-Mo;Suh, Jun-Kyu;Kang, Young-Hwa
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.448-453
    • /
    • 2009
  • This study was performed to elucidate anticancer activities of various parts, such as peel, flesh, placenta, seed, stalk and stem leaf of oriental melon. Chemopreventive and anticancer effects of oriental melon extract were evaluated by detoxifying enzyme, quinone reductase (QR) inductive activity, cytotoxicity and growth inhibitory effect against hepatoma cell. Stalk and stem leaf extracts of oriental melon showed the increment of QR inductive activity with dose-dependent manner and induced quinone reductase 3.9, 1.5-fold at $200{\mu}g/mL$ respectively compared to control. The growth inhibitory effect of oriental melon extract against mouse hepatoma cell (Hepa1c1c7) was investigated by crystal violet (CV) assay. Stalk and stem leaf of oriental melon showed potent growth inhibitory effect. Based on these result, the growth inhibitory effects of stalk, stem leaf at various concentration were examined in detail by MTT assay using human hepatoma cancer cell (HepG2). All of two parts showed growth inhibitory effects and expecially stalk exhibited inhibitory effect of 60.3% at maximum concentration. The above results suggest that stalk of oriental melon has a possibility as a source of natural cancer chemopreventive materials.

Induction of Quinone Reductase Activity in Hepatoma Cells by Paprika (Capsicum annuum L.) (파프리카 추출물이 quinone reductase 유도활성에 미치는 영향)

  • Yu, Mi-Hee;Lee, Hyo-Jung;Im, Hyo-Gwon;Lee, Syng-Ook;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.707-711
    • /
    • 2006
  • Phase 2 enzymes are transcriptionally induced by a wide variety of chemical agents and natural products, and their induction plays a critical role in protection against chemical carcinogens and other toxic xenobiotics. The activity of the methanol extract and fractions of paprika (Capsicum annuum L.) was examined in murine Hepa1c1c7 cells for the induction of nicotinamide adenine dinucleotide (phosphate) NAD(P)H/quinone reductase (QR). The ethyl acetate (EtOAc) fraction induced QR activity in a dose-dependent manner in the concentration range of 10 to $500\;{\mu}g/mL$ with a maximum of a 3.3-fold increase in induction. The EtOAc fraction also showed high QR induction potency in Ah-receptor-defective mutant of Hepa 1c1c7 cells ($BP^rcl$ cells), which indicates that this fraction is a monofunctional inducer of QR. These results suggest that useful cancer chemopreventive materials could be isolated from EtOAc fraction of Paprika.