DOI QR코드

DOI QR Code

Computational screening of electroactive indolequinone derivatives as high-performance active materials for aqueous redox flow batteries

  • Han, Young-Kyu (Department of Energy and Materials Engineering and Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul) ;
  • Jin, Chang-Soo (Energy Storage Lab., Korea Institute of Energy Research)
  • Received : 2018.08.20
  • Accepted : 2018.09.17
  • Published : 2018.12.31

Abstract

The development of an organic-based aqueous redox flow battery (RFB) using quinone as an electroactive material has attracted great attention recently. This is because this battery is inexpensive, produces high energy density, and is environment friendly in stationary electrical energy storage applications. Herein, we investigate the redox potentials and solubilities of indole-5,6-quinone and indole-4,7-quinone derivatives in terms of the substituent effects of functional groups using theoretical calculations. Our results indicate that full-site substituted derivatives of indolequinone are more useful as active materials compared to single-site substituted derivatives. In particular, our calculations reveal that the substitution of $-PO_3H_2$ and $-SO_3H$ functional groups with multiple polar bonds is very effective in increasing the activity of the aqueous RFB. As a strategy to overcome the limitation that the aqueous solubility is intrinsically low because they are organic molecules, we suggest the substitution of functional groups with multiple polar bonds to the backbones of active organic materials. Among 180 indolequinone derivatives, 17 candidates that meet the redox potential standards ($${\leq_-}0.2V$$ or $${\geq_-}0.9V$$) and eight candidates with solubility exceeding 2 mol/L are identified. Three indolequinone derivatives that satisfy both conditions are finally presented as promising electroactive candidates for an aqueous RFB.

Keywords

Acknowledgement

Supported by : KETEP

References

  1. B. Dunn, H. Kamath, J.-M. Tarascon, Science 334 (2011) 928-935. https://doi.org/10.1126/science.1212741
  2. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111 (2011) 3577-3613. https://doi.org/10.1021/cr100290v
  3. M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, M. Saleem, J. Electrochem. Soc. 158 (2011) R55. https://doi.org/10.1149/1.3599565
  4. A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, J. Appl. Electrochem. 41 (2011) 1137-1164. https://doi.org/10.1007/s10800-011-0348-2
  5. C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, J. Phys. Chem. Lett. 4 (2013) 1281-1294. https://doi.org/10.1021/jz4001032
  6. Q. Huang, Q. Wang, ChemPlusChem 80 (2015) 312-322. https://doi.org/10.1002/cplu.201402099
  7. T. Janoschka, N. Martin, U. Martin, C. Friebe, S. Morgenstern, H. Hiller, M.D. Hager, U.S. Schubert, Nature 527 (2015) 78-81. https://doi.org/10.1038/nature15746
  8. J. Huang, L. Su, J.A. Kowalski, J.L. Barton, M. Ferrandon, A.K. Burrell, F.R. Brushett, L. Zhang, J. Mater. Chem. A 3 (2015) 14971-14976. https://doi.org/10.1039/C5TA02380G
  9. J. Winsberg, C. Stolze, S. Muench, F. Liedl, M.D. Hager, U.S. Schubert, ACS Energy Lett. 1 (2016) 976-980. https://doi.org/10.1021/acsenergylett.6b00413
  10. J.A. Kowalski, L. Su, J.D. Milshtein, F.R. Brushett, Curr. Opin. Chem. Eng. 13 (2016) 45-52. https://doi.org/10.1016/j.coche.2016.08.002
  11. M.T. Huynh, C.W. Anson, A.C. Cavell, S.S. Stahl, S. Hammes-Schiffer, J. Am. Chem. Soc. 138 (2016) 15903-15910. https://doi.org/10.1021/jacs.6b05797
  12. M. Park, J. Ryu, W. Wang, J. Cho, Nat. Rev. Mater. 2 (2017) 16080. https://doi.org/10.1038/natrevmats.2016.80
  13. X. Wei, W. Pan, W. Duan, A. Hollas, Z. Yang, B. Li, Z. Nie, J. Liu, D. Reed, W. Wang, V. Sprenkle, ACS Energy Lett. 2 (2017) 2187-2204. https://doi.org/10.1021/acsenergylett.7b00650
  14. P. Leung, A.A. Shah, L. Sanz, C. Flox, J.R. Morante, Q. Xu, M.R. Mohamed, C. Ponce de Leon, F.C. Walsh, J. Power Sources 360 (2017) 243-283. https://doi.org/10.1016/j.jpowsour.2017.05.057
  15. Y.G. Zhu, Y. Du, C. Jia, M. Zhou, L. Fan, X. Wang, Q. Wang, J. Am. Chem. Soc. 139 (2017) 6286-6289. https://doi.org/10.1021/jacs.7b01146
  16. Y. Ding, G. Yu, Chem 3 (2017) 917-919. https://doi.org/10.1016/j.chempr.2017.11.010
  17. J. Marschewski, L. Brenner, N. Ebejer, P. Ruch, B. Michel, D. Poulikakos, Energy Environ. Sci. 10 (2017) 780-787. https://doi.org/10.1039/C6EE03192G
  18. E.S. Beh, D. De Porcellinis, R.L. Gracia, K.T. Xia, R.G. Gordon, M.J. Aziz, ACS Energy Lett. 2 (2017) 639-644. https://doi.org/10.1021/acsenergylett.7b00019
  19. C. Zhang, Y. Ding, L. Zhang, X. Wang, Y. Zhao, X. Zhang, G. Yu, Angew. Chem. Int. Ed. 56 (2017) 7454-7459. https://doi.org/10.1002/anie.201703399
  20. B. Hu, C. DeBruler, Z. Rhodes, T.L. Liu, J. Am. Chem. Soc. 139 (2017) 1207-1214. https://doi.org/10.1021/jacs.6b10984
  21. J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Angew. Chem. Int. Ed. 56 (2017) 686-711. https://doi.org/10.1002/anie.201604925
  22. M.J. Baran, M.N. Braten, E.C. Montoto, Z.T. Gossage, L. Ma, E. Chenard, J.S. Moore, J. Rodriguez-Lopez, B.A. Helms, Chem. Mater. 30 (2018) 3861-3866. https://doi.org/10.1021/acs.chemmater.8b01318
  23. J. Friedl, M.A. Lebedeva, K. Porfyrakis, U. Stimming, T.W. Chamberlain, J. Am. Chem. Soc. 140 (2018) 401-405. https://doi.org/10.1021/jacs.7b11041
  24. C. Minke, T. Turek, J. Power Sources 376 (2018) 66-81. https://doi.org/10.1016/j.jpowsour.2017.11.058
  25. C. Zhang, L. Zhang, Y. Ding, S. Peng, X. Guo, Y. Zhao, G. He, G. Yu, Energy Storage Mater. 15 (2018) 324-350. https://doi.org/10.1016/j.ensm.2018.06.008
  26. Z. Yang, L. Tong, D.P. Tabor, E.S. Beh, M.-A. Goulet, D. De Porcellinis, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, Adv. Energy Mater. 8 (2018) 1702056. https://doi.org/10.1002/aenm.201702056
  27. A. Hollas, X. Wei, V. Murugesan, Z. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, Nat. Energy 3 (2018) 508-514. https://doi.org/10.1038/s41560-018-0167-3
  28. B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, Nature 505 (2014) 195-198. https://doi.org/10.1038/nature12909
  29. B. Yang, L. Hoober-Burkhardt, F. Wang, G.K. Surya Prakash, S.R. Narayanan, J. Electrochem. Soc. 161 (2014) A1371-A1380. https://doi.org/10.1149/2.1001409jes
  30. S. Er, C. Suh, M.P. Marshak, A. Aspuru-Guzik, Chem. Sci. 6 (2015) 885-893. https://doi.org/10.1039/C4SC03030C
  31. S.D. Pineda Flores, G.C. Martin-Noble, R.L. Phillips, J. Schrier, J. Phys. Chem. C 119 (2015) 21800-21809. https://doi.org/10.1021/acs.jpcc.5b05346
  32. K. Lin, Q. Chen, M.R. Gerhardt, L. Tong, S.B. Kim, L. Eisenach, A.W. Valle, D. Hardee, R.G. Gordon, M.J. Aziz, M.P. Marshak, Science 349 (2015) 1529-1532. https://doi.org/10.1126/science.aab3033
  33. K. Lin, R. Gomez-Bombarelli, E.S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M.J. Aziz, R.G. Gordon, Nat. Energy 1 (2016) 16102. https://doi.org/10.1038/nenergy.2016.102
  34. K. Wedege, E. Drazevic, D. Konya, A. Bentien, Sci. Rep. 6 (2016) 39101. https://doi.org/10.1038/srep39101
  35. W. Li, H.-C. Fu, L. Li, M. Caban-Acevedo, J.-H. He, S. Jin, Angew. Chem. Int. Ed. 55 (2016) 13104-13108. https://doi.org/10.1002/anie.201606986
  36. B. Yang, L. Hoober-Burkhardt, S. Krishnamoorthy, A. Murali, G.K.S. Prakash, S.R. Narayanan, J. Electrochem. Soc. 163 (2016) A1442-A1449. https://doi.org/10.1149/2.1371607jes
  37. T.J. Hou, K. Xia, W. Zhang, X.J. Xu, J. Chem. Inf. Comput. Sci. 44 (2004) 266-275. https://doi.org/10.1021/ci034184n
  38. E. Shoghi, E. Fuguet, E. Bosch, C. Rafols, Eur. J. Pharm. Sci. 48 (2013) 291-300. https://doi.org/10.1016/j.ejps.2012.10.028
  39. D.J. McKenna, R. Errington, K. Pors, J. Cancer Metastasis Treat. 4 (2018) 1-13. https://doi.org/10.20517/2394-4722.2017.65
  40. G.J. Peters, Cancer Drug Resist. 1 (2018) 1-5. https://doi.org/10.20517/cdr.2018.03
  41. K. Zhang, D. Chen, K. Ma, X. Wu, H. Hao, S. Jiang, J. Med. Chem. 1 (2018), https://doi.org/acs.jmedchem.8b00124.
  42. D. Goyal, A. Kaur, B. Goyal, ChemMedChem 13 (2018) 1275-1299. https://doi.org/10.1002/cmdc.201800156
  43. W. Oosterlinck, K. Decaestecker, Expert Rev. Anticancer Ther. 18 (2018) 437-443. https://doi.org/10.1080/14737140.2018.1451748
  44. A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913
  45. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
  46. Marvin 14.8.25.0, (2014) ChemAxon http://www.chemaxon.com , Accessed date: 3 September 2015http://www.chemaxon.com.