• 제목/요약/키워드: quaternion number

검색결과 21건 처리시간 0.025초

FUNCTIONS AND DIFFERENTIAL OPERATORS IN THE DUAL REDUCED QUATERNION FIELD

  • Jung, Hyun Sook;Shon, Kwang Ho
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.293-302
    • /
    • 2013
  • We research properties of ternary numbers and hyperholomorphic functions with values in $\mathbb{C}$(2). We represent reduced quaternion numbers and obtain some propertries in dual reduced quaternion systems in view of Clifford analysis. Moreover, we obtain Cauchy theorems with respect to dual reduced quaternions.

LEVEL-m SCALED CIRCULANT FACTOR MATRICES OVER THE COMPLEX NUMBER FIELD AND THE QUATERNION DIVISION ALGEBRA

  • Jiang, Zhao-Lin;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.81-96
    • /
    • 2004
  • The level-m scaled circulant factor matrix over the complex number field is introduced. Its diagonalization and spectral decomposition and representation are discussed. An explicit formula for the entries of the inverse of a level-m scaled circulant factor matrix is presented. Finally, an algorithm for finding the inverse of such matrices over the quaternion division algebra is given.

정밀 스트랩다운 관성항법을 위한 혼합 이체쿼터니언 알고리즘 (Hybrid Dual Quaternion Algorithm For Precise Strapdown Inertial Navigation)

  • 심주영;이한성;박찬국;유명종;이형근
    • 한국항공우주학회지
    • /
    • 제35권7호
    • /
    • pp.627-632
    • /
    • 2007
  • 근래에 들어 관성항법 알고리즘의 성능 향상에 이체 쿼터니언(dual quaternion)이 새로이 적용되기 시작하였다. 이체 쿼터니언은 선형 미분방정식으로 계산하는 쿼터니언을 회전운동과 병진운동을 동시에 취급하는 이체수(dual number) 체계로 확장한 형태이다. 본 논문에서는 기존의 관성항법 알고리즘과 근래에 소개된 이체 쿼터니언 알고리즘을 분석하여 두 알고리즘의 장점을 결합한 새로운 형태의 정밀 이체 쿼터니언 알고리즘을 제안하였다. 제안된 혼합 알고리즘은 기존 알고리즘과 유사한 수치적 연산량으로 이체 쿼터니언의 알고리즘과 유사한 정확도 향상을 얻을 수 있다. 시뮬레이션을 통하여 제안된 혼합 알고리즘의 연산량 및 정확도를 평가하였다.

MODIFICATION OF REGULAR FUNCTIONS ON TERNARY REAL NUMBERS IN THE VIEW OF QUATERNION

  • Ji Eun Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권3호
    • /
    • pp.913-927
    • /
    • 2024
  • In this paper, we represent regular functions on ternary theory in the view of quaternion. By expressing quaternions using ternary number theory, a new form of regular function, called E-regular, is defined. From the defined regular function, we investigate the properties of the appropriate hyper-conjugate harmonic functions and corresponding Cauchy-Riemann equations by pseudo-complex forms.

Theta series by primitive orders

  • Jun, Sung-Tae
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.583-602
    • /
    • 1995
  • With the theory of a certain type of orders in a Quaternion algebra, we construct Brandt matrices and theta series. As a application, we calculate the class number of a certain type of orders in a Quanternion algebra with the trace formular of Brandt matrices.

  • PDF

DUAL QUATERNIONIC REGULAR FUNCTION OF DUAL QUATERNION VARIABLES

  • KIM, JI EUN;SHON, KWANG HO
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권1호
    • /
    • pp.97-104
    • /
    • 2016
  • We give representations of differential operators and rules for addition and multiplication of dual quaternions. Also, we research the notions and properties of a regular function and a corresponding harmonic function with values in dual quaternions of Clifford analysis.