• Title/Summary/Keyword: quasi-static method

Search Result 317, Processing Time 0.026 seconds

Measurement of Geometric Errors in a Miniaturized Machine Tool Using Capacitance Sensors (정전용량센서를 이용한 소형공작기계의 기하학적 오차측정)

  • Kweon S.H.;Lee J.H.;Liu Y.;Lim C.B.;Yang S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1733-1736
    • /
    • 2005
  • Many studies have been carried out to produce 3D features in the size range between $10{\mu}m\~10,000{\mu}m$, called Meso-scale. If these miniaturized systems have high relative accuracy and good volumetric utilization, it is possible to manufacture more complex and accurate shapes with various materials as well as there are advantages of reducing energy, space and resources. Due to imperfect components and misalignment in assembly, it is necessary to assess the accuracy of the miniaturized system itself to obtain high relative accuracy. Laser interferometers are widely used to measure geometric errors called as quasi-static errors. For miniaturized system, however, it is difficult to install the required accessories such as optics and the measuring range is limited because of the size of the system and also this method is very expensive. Moreover, it is impossible to measure each error component simultaneously. A new system to measure simultaneously multiple geometric errors is proposed using capacitance sensors. Each error was measured using capacitance sensors and a measurement algorithm was mathematically derived. The experiments show that the proposed measurement system can be used effectively to assess the accuracy of miniaturized system at a low cost.

  • PDF

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

Damage zone induced by quasi-static gas pressure during blasting (준정적인 발파 가스압에 의한 암반의 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1409-1416
    • /
    • 2010
  • It is essential to predict a blasting-induced excavation damage zone (EDZ) beyond the proposed excavation line of a tunnel because the unwanted damage area requires extra support system for tunnel safety. Complicated blasting process which may hinder a proper characterization of the damage zone can be effectively represented by two loading mechanisms. The one is a dynamic impulsive load generating stress waves outwards immediately after detonation. The other is a gas pressure that remains for a relatively long time. Since the gas pressure reopens up the arrested cracks and continues to extend some cracks, it contributes to the final formation of EDZ induced by blasting. This paper presents the simple method to evaluate EDZ induced by gas pressure during blasting in rock. The EDZ is characterized by analyzing crack propagation from the blasthole. To do this, a model of the blasthole with a number of radial cracks of equal length in an infinite elastic plane is considered. In this model, the crack propagation is simulated by using three conditions, the crack propagation criterion, the mass conservation of the gas, and the adiabatic condition. As a result, the stress intensity factor of the crack generally decreases as crack propagates from the blasthole so that the length of the crack is determined. In addition, the effect of rock properties, initial number of cracks, and the adiabatic exponent are investigated.

  • PDF

Generalized Sub-optimum Decoding for Space-Time Trellis Codes in Quasistatic Flat Fading Channel (준정적 플랫 페이딩 채널에서 시공간 트렐리스 부호의 일반화된 부최적 복호법)

  • Kim Young Ju;Shin Sang Sup;Kang Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.89-94
    • /
    • 2006
  • We present a generalized version of principal ratio combining (PRC)[1], which is a near-optimum decoding scheme for space-time trellis codes in quasi-static flat fading environments. In [1], the performance penalty increases as the number of receive antennas increases. In the proposed scheme, receive antennas are divided into K groups, and the PRC decoding method is applied to each group. This shows a flexible tradeoff between performance and decoding complexity by choosing the appropriate K. Moreover, we also propose the performance index(PI) to easily predict the decoding performance among the possible different(receive antenna) configurations.

Experimental research on the propagation of plastic hinge length for multi-scale reinforced concrete columns under cyclic loading

  • Tang, Zhenyun;Ma, Hua;Guo, Jun;Xie, Yongping;Li, Zhenbao
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.823-840
    • /
    • 2016
  • The plastic hinge lengths of beams and columns are a critical demand parameter in the nonlinear analysis of structures using the finite element method. The numerical model of a plastic hinge plays an important role in evaluating the response and damage of a structure to earthquakes or other loads causing the formation of plastic hinges. Previous research demonstrates that the plastic hinge length of reinforced concrete (RC) columns is closely related to section size, reinforcement ratio, reinforcement strength, concrete strength, axial compression ratio, and so on. However, because of the limitations of testing facilities, there is a lack of experimental data on columns with large section sizes and high axial compression ratios. In this work, we conducted a series of quasi-static tests for columns with large section sizes (up to 700 mm) and high axial compression ratios (up to 0.6) to explore the propagation of plastic hinge length during the whole loading process. The experimental results show that besides these parameters mentioned in previous work, the plastic hinge of RC columns is also affected by loading amplitude and size effect. Therefore, an approach toward considering the effect of these two parameters is discussed in this work.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

Experiments on the Denting Damage and Residual Strength of Stiffened Plates (보강판의 국부변형 손상과 잔류 강도의 실험연구)

  • Park, Sang-Hyun;Shin, Hyun Kyoung;Kang, Eungsoon;Cho, Sang-Rai;Jang, Yong-Su;Baek, Nam-Ki;Park, Dong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.182-190
    • /
    • 2020
  • This study reports a series of drop impact tests performed to generate denting damages on stiffened plates and their residual ultimate strength tests under axial compression. The models were fabricated of general structural steel, and each model has six longitudinal stiffeners and two transverse frames. Among six fabricated models, four were damaged, and two were left intact for reference. To investigate the effects of collision velocity and impact location on the extent of damage, the drop height and the impact location were changed in each impact test. After performing the collision tests, the ultimate axial compression tests were conducted to investigate the residual strengths of the damaged stiffened plates. Finite element analyses were also carried out using a commercial package Abaqus/Explicit. The material properties obtained from a quasi-static tensile tests were used, and the strain-rate sensitivity was considered. After importing the collision simulation results, the ultimate strength calculations were carried out and their results were compared with the test data for the validation of the finite element analysis method.

Seismic Performance Evaluation of Beam-Column Connection for Panel Zone Strength (패널존의 강도비에 따른 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Young;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.11-20
    • /
    • 2007
  • The study proposes the method to cancel the scallop to avoid fracture of the circumstance of the scallop at H shape column-to-beam connection and reinforce at beam flange two faces with the cover plates and rib. A total of four specimens were tested to enhance seismic performance of building structure by reducing the frequency of stress concentration and preventing the brittle fracture of scallop. For this purpose, four full-scale test specimens were made and loaded with quasi-static reversed cyclic loading. The main analytical parameters are panel-zone-strength ratio, yield strengths, initial stiffness, total plastic rotation, contribution of each element to total plastic rotation and energy dissipation capability. For the specimens tested under repeated loading, the experimental result was satisfied with seismic performance requirement as the Special Moment Frames (SMF). The analysis results show that all of the test specimens were found to have good performance to 4% story drift and satisfied the criteria for the plastic roation capacity of SMFs that is 0.03 rad. according to the 1997 AISC seismic provision.

Seismic Fragility Analysis of Base Isolated NPP Piping Systems (지진격리된 원전배관의 지진취약도 분석)

  • Jeon, Bub Gyu;Choi, Hyoung Suk;Hahm, Dae Gi;Kim, Nam Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Base isolation is considered as a seismic protective system in the design of next generation Nuclear Power Plants (NPPs). If seismic isolation devices are installed in nuclear power plants then the safety under a seismic load of the power plant may be improved. However, with respect to some equipment, seismic risk may increase because displacement may become greater than before the installation of a seismic isolation device. Therefore, it is estimated to be necessary to select equipment in which the seismic risk increases due to an increase in the displacement by the installation of a seismic isolation device, and to perform research on the seismic performance of each piece of equipment. In this study, modified NRC-BNL benchmark models were used for seismic analysis. The numerical models include representations of isolation devices. In order to validate the numerical piping system model and to define the failure mode, a quasi-static loading test was conducted on the piping components before the analysis procedures. The fragility analysis was performed by using the results of the inelastic seismic response analysis. Inelastic seismic response analysis was carried out by using the shell finite element model of a piping system considering internal pressure. The implicit method was used for the direct integration time history analysis. In addition, the collapse load point was used for the failure mode for the fragility analysis.

Research on prefabricated concrete beam-column joint with high strength bolt-end plate

  • Shufeng, Li;Di, Zhao;Qingning, Li;Huajing, Zhao;Jiaolei, Zhang;Dawei, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.395-406
    • /
    • 2020
  • Many prefabricated concrete frame joints have been proposed, and most of them showed good seismic performance. However, there are still some limitations in the proposed fabricated joints. For example, for prefabricated prestressed concrete joints, prefabricated beams and prefabricated columns are assembled as a whole by the pre-stressed steel bar and steel strand in the beams, which brings some troubles to the construction, and the reinforcement in the core area of the joints is complex, and the mechanical mechanism is not clear. Based on the current research results, a new type of fabricated joint of prestressed concrete beams and confined concrete columns is proposed. To study the seismic performance of the joint, the quasi-static test is carried out. The test results show that the nodes exhibit good ductility and energy dissipation. According to the experimental fitting method and the "fixed point pointing" law, the resilience model of this kind of nodes is established, and compared with the experimental results, the two agree well, which can provides a certain reference for elasto-plastic seismic response analysis of this type of structure. Besides, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.