• Title/Summary/Keyword: quasi-resonant method

Search Result 39, Processing Time 0.022 seconds

Expansion of Operating Mode of 3-Phase Quasi-Resonant DC Link Inverter (3-Phase Quasi-Resonant Inverter의 동작모드 확장)

  • Yang, S.B.;Lee, J.W.;Park, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.267-271
    • /
    • 1990
  • This paper describes a 3-Phase Quasi-Resonant DC Link Inverter (3-phase QRI), which has two operating modes, ie. inverting mode and rectifying mode. First the 3-Phase QRI is simplified and the resonant circuit is analyzed in comparison with two resonant DC-to-DC converters. This analysis shows that the maximum voltage of resonant capacitor is limited to twice the input voltage irrespective of operating modes. A new simple control method in rectifying mode is suggested, which does not require any other element in power circuit. The characteristic of 3-Phase Quasi Resonant Inverter has been verified by simulation using the proposed control method.

  • PDF

Quasi-Parallel Resonant DC-link Inverter with One Additional Switching Device (하나의 추가 스위칭 소자를 갖는 유사병렬 공진형 DC-link 인버터)

  • 정용채
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.170-175
    • /
    • 2000
  • A new quasi-parallel resonant DC link inverter is proposed for three phase soft switching application. By i inserting only one additional switch, the proposed inverter excludes both voltage stresses and restricted PWM p problems, which are demerits of the conventional resonant inverter. In this paper, the circuit operations are e explained in detail using the operational mode analysis of the proposed inverter and design methods of the r resonant components are suggest('x:l. Lastly, the applicable possibility of the proposed inverter is vel예fied t through the experimental results.

  • PDF

Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor-Current-Feedback Active Damping

  • Lyu, Yongcan;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1322-1333
    • /
    • 2014
  • To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor-current-feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.

A New PWM-Controlled Quasi-Resonant Converter for a High Efficiency PDP Sustaining Power Module

  • Lee, Woo-Jin;Choi, Seong-Wook;Kim, Chong-Eun;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • A new PWM-controlled quasi-resonant converter for a high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with a bi-directional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stresses of power switches. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

ZERO - VOLTAGE - SWITCHED QUASI - RESONANT DC - DC CONVERTER WITH 1MHZ SWITCHING FREQUENCY (1MHZ 공진형 DC - DC 콘버터)

  • Lee, Y.J.;Kim, H.J.;Ahn, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.381-384
    • /
    • 1988
  • This paper analysed basic operation in Zero-voltages-switching quasi-resonant buck converter and considered steady state characteristics. Especially, it is confirmed that converter operating at maximum 1MHz switching frequency in load characteristics. In this paper, a novel slope method is proposed and implemented in regulation characteristics analysis. It is proved that experimenental results coincide with theory results.

  • PDF

Soft recovery PWM Quasi-Resonance Converter With a Folding Snubber Network (접히는 특성을 가진 스너버 망으로 소프트하게 복귀하는 의사 펄스 폭 변조 컨버터)

  • Jeong, Jin-Guk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.50-54
    • /
    • 2010
  • Soft recovery (SR) quasi-resonant converter (QRC) including a Folding snubber network (FSN) is introduced. It is obtained by combining normal quasi-resonant converter with folding snubber network of which the surrounding components are composed of passive devices only (diodes and capacitors). The reverse recovery loss of the main rectifier diode is eliminated by this method utilizing quasi resonance with Folding snubber network. By realizing soft switching condition, the proposed converter has PWM capability with high efficiency and is suitable for high output current and high power DC to DC converter application.

A New Low Loss Quasi Parallel Resonant DC-Link Inverter with Variable Lossless Zero Voltage Duration (무손실 가변 영전압 구간을 갖는 새로운 저손실 준 병렬공진 직류-링크 인버터)

  • 권경안;김권호;최익;정용채;박민용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.8-18
    • /
    • 1997
  • In this paper, a New Low Loss Quasi-Parallel Resonant DC-Link(NLQPRDCL) Inverter which shows highly improved PWM capability, low loss characteristic and low voltage stress is presented. A method to minimize freewheeling interval, which is able to largely decrease DC-link operation losses and to steadily guarantee soft switching in the wide operation region is also proposed. In addition, lossless control of zero voltage duration of DC-link makes the proposed inverter maintain the advanced PWM capability even under a very low modulation index. Experiment and simulation were performed to verify validity of the proposed inverter topology.

A Study On High Power Factor Sine Pulse Type Power Supply For Atmospheric Pressure Plasma Cleaning System with 3-Phase PFC Boost Converter (3상 PFC 부스트 컨버터를 채용한 상압플라즈마 세정기용 고역률 정형파 펄스 출력형 전원장치에 관한 연구)

  • Han, Hee-Min;Kim, Min-Young;Seo, Kwang-Duk;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents quasi-resonant type high power factor ac power supply for atmospheric pressure plasma cleaning system adopting three phase PFC boost converter and it's control method. The presented ac power supply consists of single phase H-bridge inverter, step-up transformer for generating high voltage and three phase PFC boost converter for high power factor on source utility. Unlikely to the traditional LC resonant converter, the propose one has an inductor inside only. A single resonant takes place through the inside inductor and the capacitor from the plasma load modeled into two series capacitor and one resistance. The quasi-resonant can be achieved by cutting the switching signal when the load current decrease to zero. To obtain power control ability, the propose converter controlled by two control schemes. One is the changing output pulse period scheme in the manner of PFM(Pulse Frequency Modulation) control. On the other, to provide more higher power to load, the DC rail voltage is directly controlled by the 3-phase PFC boost converter. The significant merits of the proposed converter are the uniform power providing capability for high quality plasma generation and low reactive power in AC and DC side. The proposed work is verified through digital simulation and experimental implementation.

A New PWM-Controlled Quasi-Resonant Converter for High Efficiency PDP Sustaining Power Module (고효율의 PDP 유지 구동 전원단을 위한 새로운 펄스폭 제어방식의 쿼지 공진 컨버터)

  • Lee Woo-Jin;Choi Seong-Wook;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.352-355
    • /
    • 2006
  • A new PWM-controlled quasi-resonant converter for high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with hi-directional auxiliary circuit, while the main switches are operating at the fixed duty ratio and fixed switching frequency. Hence, the waveform of currents can be expected to be optimized on the conduction loss. Furthermore, the proposed converter shows the good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stress of power switches. In this paper, operational principles, analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit as PWM method.

  • PDF