• Title/Summary/Keyword: quasi-increasing

Search Result 294, Processing Time 0.023 seconds

Protocol for testing of cold-formed steel wall in regions of low-moderate seismicity

  • Shahi, Rojit;Lam, Nelson;Gad, Emad;Wilson, John
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.629-647
    • /
    • 2013
  • Loading protocols have been developed for quasi-static cyclic testing of structures and components. However, it is uncertain if protocols developed for conditions of intense ground shaking in regions of high seismicity would also be applicable to regions of low-moderate seismicity that are remote from the tectonic plate boundaries. This study presents a methodology for developing a quasi-static cyclic displacement loading protocol for experimental bracing evaluation of cold-formed steel stud shear walls. Simulations presented in the paper were based on conditions of moderate ground shaking (in Australia). The methodologies presented are generic in nature and can be applied to other regions of similar seismicity conditions (which include many parts of China, Korea, India and Malaysia). Numerous response time histories including both linear and nonlinear analyses have been generated for selected earthquake scenarios and site classes. Rain-flow cycle counting method has been used for determining the number of cycles at various ranges of normalized displacement amplitude. It is found that the number of displacement cycles of the loading protocol increases with increasing intensity of ground shaking (associated with a longer return period).

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Availability Evaluation of Quasi Static RTK Positioning for Construction of High Rise Buildings and Civil Structures (고가(高架)구조물의 정위치 시공을 위한 준스태틱RTK 측위의 적용성 실험)

  • Kim, In-Seop
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.119-126
    • /
    • 2011
  • During precise survey on the top of High rise buildings and civil structures, optical surveying equipments like a Total Station are not recommended to use because of some reasons that uneasier alignment with reflectors located at the top of building, increasing error depends on increasement of observation distance and unavailable dynamic positioning etc. Recently various GPS positioning methods have been applied to this job however almost of them are post-processing method which is required much longer time during for whole process includes stake-out, cross checking, fixing positions and final inspections. Therefore, in this study, we applied with RTK surveying system which allows stake-out and inspection in realtime to avoid delaying of construction schedule and also applied with Quasi Static RTK measurement and network adjustment to get a high accuracy within a few millimeters in structure positioning to achieve a successful management for process and quality control of the project. As a result, very high accurate surveying for structures within approx. 2mm in realtime has been achieved when surveyor conduct a network adjustment using least square method for 4 base lines created by Quasi Static RTK data and we expect this method will be applied to construction survey for high rise buildings and civil structures in the future.

Effects of the Internet Game Addiction Prevention Educational Program on Self-control and Time Spent on Internet Games by Elementary School Students (인터넷게임중독 예방교육프로그램이 초등학생의 자기통제성과 인터넷게임 사용시간에 미치는 효과)

  • Yang, Mi-Kyung;Oh, Won-Oak
    • Child Health Nursing Research
    • /
    • v.13 no.3
    • /
    • pp.282-290
    • /
    • 2007
  • Purpose: The purpose of this study was to examine the effects of EP-IGAP(Internet Game Addiction Prevention Educational Program) on increasing the self-control and decreasing the time spent on internet games. Method: The research design was a quasi-experiment, repeated measures design with non-equivalent control group. Participants in this study were 269 elementary school students of elementary school(134 for the experimental group, 135 for the control group). The instruments used in this study were the Self-control of Internet Game Scale and Time spent on internet games per week. The experimental group participated in the EP-IGAP for 6 weeks. Results: After the intervention, the experimental group showed a significant increase in self-control related to internet games. But, there was no statistical difference in the time spent on internet games between the two groups. Conclusion: These results suggest that EP-IGAP is effective in increasing the self-control related to internet games in elementary school students. Further research is needed to modify the EP-IGAP.

  • PDF

The Effect of Music Therapy on the Elderly People's Depression and Life-Satisfaction (음악요법이 노인의 우울과 삶의 만족도에 미치는 영향)

  • Park, Mi-Jeong;Chung, Young
    • Research in Community and Public Health Nursing
    • /
    • v.16 no.3
    • /
    • pp.241-248
    • /
    • 2005
  • Purpose: This research was carried out to examine if music therapy is effective in decreasing elderly people's depression level and in increasing their life satisfaction level Methods: This study used the quasi-experimental design with nonequivalent control group and the pre-test and post-test design, and was conducted from the 26th of July to the 26th of September in 2004. Data were collected using a questionnaire developed by Y.esavage et al. (1983) to measure depression level and one developed by Yoon (1982) to measure life satisfaction level. The subjects were 80 elderly people who were the members of an elderly welfare center in G city. The subjects were divided into an experimental group (n=40) and a control group (n=40). Results: The first hypothesis 'The depression level will be lowered in the experimental group who received music therapy' was supported (t=3.856, p=.000). The second hypothesis 'The life satisfaction level will be raised in the experimental group who received music therapy' was supported (t=2.040, p=.045). The results above suggest that music therapy can be an effective nursing intervention for reducing the depression level and increasing the life satisfaction level of elderly people.

  • PDF

Nanoparticle Effect on Durability of Carbon fiber/Epoxy Composites in Saline Water Environment (염수환경에서 탄소섬유/에폭시 복합재료의 내구성에 미치는 나노입자의 영향)

  • Kim, Bu-Ahn;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-68
    • /
    • 2014
  • This study was conducted to investigate the durability of carbon fiber/epoxy composites (CFRP) in a saline water environment. The carbon fiber/epoxy composites were modified to use nanoparticles such as carbon nanotubes and titanum oxide. These hybrid composites were exposed to a saline water environment for a certain period. The weight gain according to the immersion time, a quasi-static tensile test, and micro-graphic characterization were used to investigate the samples exposed to the saline water environment. The weight gains increased with increasing immersion time. The weight gains of the hybrid composites were lower than that for pure CFRP throughout the entire immersion time. The tensile strengths decreased with increasing immersion time. The tensile strengths of the hybrid composites were higher than that of the pure CFRP throughout the entire immersion time. The pure CFRP was observed to be more degraded than the hybrid composites in the saline water environment. Therefore, it was concluded that the addition of nanoparticles to CFRP could lead to improved durability in a saline water environment.

Electromagnetic Wave Absorption Characteristics of Nanocrystalline FeCuNbSiB Alloy Flakes/Polymer Composite Sheets with Different Flake Thickness

  • Lee, Tae-Gyu;Kim, Ju-Beom;Noh, Tae-Hwan
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.155-160
    • /
    • 2009
  • This study examined the effects of a decrease in thickness of magnetic alloy flakes on the electromagnetic wave absorption characteristics of nanocrystalline $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ (at.%) alloy flakes/polymer composite sheets available for a quasi-microwave band. The thickness of FeCuNbSiB alloy flakes decreased to 1-2 $\mu$m with increasing milling time up to 24 h, and the composite sheet including alloy flakes milled for 24 h exhibited considerably enhanced power loss properties in the GHz range compared to the sheets having non-milled alloy powders. Although a considerable increase in loss factor upon milling was observed in the narrow frequency range of 4-6 GHz, there was no correlation between the complex permeability and flake thickness. However, the complex permittivity increased with increasing milling time, and there was good agreement between the milling time and the frequency dependences of the complex permittivity and power loss.

Numerical Analysis of Loss Power Properties in the Near-Field Electromagnetic Wave Through A Microstrip Line for Multilayer Magnetic Films with Different Levels of Electrical Conductivity

  • Lee, Jung-Hwan;Kim, Sang-Woo
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.92-96
    • /
    • 2008
  • There are few reports of high frequency loss behavior in the near-field for magnetic films with semiconducting properties, even though semiconducting magnetic materials, such as soft magnetic amorphous alloys and nanocrystalline thin films, have been demonstrated. The electromagnetic loss behavior of multilayer magnetic films with semiconducting properties on the microstrip line in quasi-microwave frequency band was analyzed numerically using a commercial finite-element based electromagnetic solver. The large increase in the absorption performance and broadband characteristics of the semiconducting/insulating layer magnetic films examined in this study were attributed to an increase in the loss factor of resistive loss. The electromagnetic reflection increased significantly with increasing conductivity, and the loss power deteriorated significantly. The numerical results of the magnetic field distribution showed that a strong radiated signal on the microstrip line was emitted with increasing conductivity and decreasing film thickness due to re-reflection of the radiated wave from the surface of the magnetic film, even though the emitted levels varied with film thickness.

Study of Nanoparticle Effect on Durability of Carbon fiber/Epoxy Resin Composites in Moisture Environment (수분환경에서 탄소섬유강화 에폭시수지의 내구성에 대한 나노입자의 영향)

  • Ahn, Seok-Hwan;Choi, Young-Min;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2014
  • This study has been investigated on the durability of carbon fiber/epoxy composites (CFRP) in moisture environment. The carbon fiber/epoxy composites were modified to use the nanoparticles such as carbon nanotubes and titanium oxide. These hybrid composites were exposed to moisture environment for a certain period of time. Weight gain according to immersion time, quasi-static tensile test and micro-graphic characterization were investigated on the samples exposed to moisture environment. Consequently, the weight gains increased with increasing immersion time and weight gain of the hybrid composites was lower than the one of CFRP through the whole immersion time. The tensile strengths decreased with increasing immersion time and tensile strengths of the hybrid composites were higher than the one of CFRP through the whole immersion time. The CFRP were observed more degraded than hybrid compositess in moisture environment. Therefore, it was concluded that the addition of nanoparticles in CFRP could lead to improve the durability in moisture environment.