• 제목/요약/키워드: quasi-1D numerical model

검색결과 26건 처리시간 0.021초

준선형 수치모델을 이용한 투과성 소파장치의 반사율 (Reflection of Porous Wave Absorber Using Quasi-linear Numerical Model)

  • 고창현;조일형
    • 한국해안·해양공학회논문집
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2018
  • 본 연구에서는 투과성 판을 통과하면서 발생하는 에너지 손실효과를 나타내는 비선형 항력 항을 등가 선형화기법으로 선형화시킨 준선형 모델을 제안하였다. 이 모델을 경계요소법(Boundary Element Method)으로 풀어 2차원 조파수조의 투과성 소파장치를 개발에 활용하였다. 투과성 판에서의 항력계수는 수리 모형실험 결과와 비교를 통해 새롭게 구하였다. 공극률 0.1, 잠긴 깊이 d/h = 0.1, 경사각도 $10^{\circ}{\leq}{\theta}{\leq}20^{\circ}$를 갖는 투과성 소파장치가 전반적으로 우수한 소파성능을 보였다. 개발된 준선형 수치모델은 앞으로 다양한 형태의 투과성 소파장치의 최적 설계에 활용될 것이다.

온도기울기 농축(TGF) 향상을 위한 미세채널 형상 최적화 연구 (Geometric Optimization of a Microchannel for the Improvement of Temperature Gradient Focusing)

  • 한태헌;김선민
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.17-24
    • /
    • 2011
  • Temperature gradient focusing (TGF) of analytes via Joule heating is achieved when electric field is applied along a microchannel of varying width. The effect of varying width of the microchannel for the focusing performance of the device was numerically studied. The governing equations were implemented into a quasi-1D numerical model along a microchannel. The validity of the numerical model was verified by a comparison between numerical and experimental results. The distributions of temperature, velocity, and concentration along a microchannel were predicted by the numerical results. The narrower middle width and wider outside width of the channel having the fixed length contribute to improve the focusing performance of the device. However, too narrow middle width of the channel generates a higher temperature which can cause the problems including sample denaturation and buffer solution boiling. Therefore, the channel geometry should be optimized to prevent these problems. The optimal widths of the microchannel for the improvement on TGF were proposed and this model can be easily applied to lab-on-a-chip (LOC) applications where focusing is required based on its simple design.

A new quasi-3D sinusoidal shear deformation theory for functionally graded plates

  • Benchohra, Mamia;Driz, Hafida;Bakora, Ahmed;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.19-31
    • /
    • 2018
  • In this paper, a new quasi-3D sinusoidal shear deformation theory for functionally graded (FG) plates is proposed. The theory considers both shear deformation and thickness-stretching influences by a trigonometric distribution of all displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower faces of the plate without employing any shear correction coefficient. The advantage of the proposed model is that it posses a smaller number of variables and governing equations than the existing quasi-3D models, but its results compare well with those of 3D and quasi-3D theories. This benefit is due to the use of undetermined integral unknowns in the displacement field of the present theory. By employing the Hamilton principle, equations of motion are obtained in the present formulation. Closed-form solutions for bending and free vibration problems are determined for simply supported plates. Numerical examples are proposed to check the accuracy of the developed theory.

Impact of porosity distribution on static behavior of functionally graded plates using a simple quasi-3D HSDT

  • Farouk Yahia Addou;Fouad Bourada;Mustapha Meradjah;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.87-97
    • /
    • 2023
  • The bending of a porous FG plate is discussed in this study using a novel higher quasi-3D hyperbolic shear deformation theory with four unknowns. The proposed theory takes into consideration the normal and transverse shear deformation effect and ensures the parabolic distribution of the transverse stresses through the thickness direction with zero-traction at the top and the bottom surfaces of the structure. Innovative porous functionally graded materials (FGM) have through-thickness porosity as a unique attribute that gradually varies with their qualities. An analytical solution of the static response of the perfect and imperfect FG plate was derived based on the virtual work principle and solved using Navier's procedure. The validity and the efficiency of the current model is confirmed by comparing the results with those obtained by others solutions. The comparisons showed that the present model is very efficient and simple in terms of computation time and exactness. The impact of the porosity parameter, aspect ratio, and thickness ratio on the bending of porous FG plate is shown through a discussion of several numerical results.

Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory

  • Daouadj, Tahar Hassaine;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.49-63
    • /
    • 2017
  • This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be noticed.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution

  • Mekerbi, Mohamed;Benyoucef, Samir;Mahmoudi, Abdelkader;Bourada, Fouad;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.513-524
    • /
    • 2019
  • The present article deals with thermal buckling of functionally graded plates with porosity and resting on elastic foundation. The basic formulation is based on quasi 3D theory. The present theory contains only four unknowns and also accommodates the thickness stretching effect. Porosity-dependent material coefficients of the plate are compositionally graded throughout the thickness according to a modified micromechanical model. Different patterns of porosity distributions are considered. The thermal loads are assumed to be uniform, linear and non-linear temperature rises through the thickness direction. The plate is assumed to be simply supported on all edges. Various numerical examples are given to check the accuracy and reliability of the present solution, in which both the present results and those reported in the literature are provided. In addition, several numerous new results for thick FG plates with porosity are also presented.

중간주파수 대역에서 준정적(Quasi-Static) FDTD 기법을 이용한 인체 유도전류 분석 (Analysis of Body Induced Current in Middle Frequency Range Using Quasi-Static FDTD)

  • 변진규
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.141-149
    • /
    • 2009
  • 본 논문에서는 준정적 FDTD 기법을 FORTRAN 프로그래밍을 통해 직접 구현하고 이를 이용해 중간주파수 대역의 인체유도전류 분포를 해석하였다. 제작된 프로그램의 타당성을 검증하기 위하여 기존 FDTD 기법을 적용하기 어려운 테스트 모델에 대한 계산결과를 이론적 해와 비교하고, 타임스텝이 크게($5.68{\times}10^6$배) 단축되는 것을 확인하였다. 검증된 수치해석 기법을 이용하여 20[kHz] 자기장과 1[MHz] 전기장에 노출된 3차원 고해상도 인체모델에 유기되는 유도전류의 분포를 계산하고, 양 발의 접지조건이 유도전류의 분포와 크기에 미치는 영향을 분석하였다. 본 연구는 인체유도전류의 안전성 평가, 생체전기 응용 진단장치 개발 등을 포함한 다양한 분야에서 활용될 것으로 기대된다.

침-평판 전극 사이에서 중간 압력 질소 방전의 시뮬레이션 (Numerical Simulation of Nitrogen Discharge at Medium Pressure between Point-Plane Electrodes)

  • 고욱희;박인호
    • 한국진공학회지
    • /
    • 제17권6호
    • /
    • pp.487-494
    • /
    • 2008
  • 준 2차원 수치적 모델을 사용하여 침-평판(point-plane)형의 전극 사이에 있는 중간 압력 질소의 방전에 대한 시뮬레이션을 수행하였다. 이 모델에서는 전자와 이온에 대한 연속방정식을 풀어 시. 공간적으로 변하는 전하분포를 계산하고, 공간 전하 분포의 변화에 따라 결정되는 전기장은 푸아송 방정식을 풀어 얻는다. 연속 방정식은 FCT (Flux-corrected transport) 알고리즘과 FEM (Finite Element Method) 방법을 적용하여 수치적으로 다루어 졌다. 50Torr 압력에서의 질소 방전에 대한 시뮬레이션 결과는 중간 압력 질소 방전의 물리적 특성에 관한 상세한 이해를 제공한다. 또 계산 결과와 실험 결과[1]와의 비교는 정성적으로 잘 일치하는 것을 보여 준다.

Fracture properties of concrete using damaged plasticity model -A parametric study

  • Kalyana Rama, J.S.;Chauhan, D.R.;Sivakumar, M.V.N;Vasan, A.;Murthy, A. Ramachandra
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.59-69
    • /
    • 2017
  • The field of fracture mechanics has gained significance because of its ability to address the behaviour of cracks. Predicting the fracture properties of concrete based on experimental investigations is a challenge considering the quasi-brittle nature of concrete. So, there is a need for developing a standard numerical tool which predicts the fracture energy of concrete which is at par with experimental results. The present study is an attempt to evaluate the fracture energy and characteristic length for different grades of concrete using Concrete Damage Plasticity (CDP) model. Indian Standard and EUROCODE are used for the basic input parameters of concrete. Numerical evaluation is done using Finite Element Analysis Software ABAQUS/CAE. Hsu & Hsu and Saenz stress-strain models are adopted for the current study. Mesh sensitivity analysis is also carried to study the influence of type and size of elements on the overall accuracy of the solution. Different input parameters like dilatation angle, eccentricity are varied and their effect on fracture properties is addressed. The results indicated that the fracture properties of concrete for various grades can be accurately predicted without laboratory tests using CDP model.