• Title/Summary/Keyword: quasi-1D numerical model

Search Result 26, Processing Time 0.165 seconds

Reflection of Porous Wave Absorber Using Quasi-linear Numerical Model (준선형 수치모델을 이용한 투과성 소파장치의 반사율)

  • Ko, Chang-hyun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In present study, we suggested the quasi-linear model that linearizes the quadratic drag representing the energy loss across the porous plate. The quasi-linear model was solved by Boundary Element Method (BEM) for development of the porous wave absorber suitable for 2-D wave tank. The drag coefficient at the porous plate was newly obtained through comparison of experimental results. It is found that the porous wave absorber with porosity 0.1, submergence depth d/h = 0.1, and inclined angle $10^{\circ}{\leq}{\theta}{\leq}20^{\circ}$ shows the effective wave absorption. Using the developed quasi-linear numerical model, the optimal design of various types of a porous wave absorber will be applied.

Geometric Optimization of a Microchannel for the Improvement of Temperature Gradient Focusing (온도기울기 농축(TGF) 향상을 위한 미세채널 형상 최적화 연구)

  • Han, Tae-Heon;Kim, Sun-Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.17-24
    • /
    • 2011
  • Temperature gradient focusing (TGF) of analytes via Joule heating is achieved when electric field is applied along a microchannel of varying width. The effect of varying width of the microchannel for the focusing performance of the device was numerically studied. The governing equations were implemented into a quasi-1D numerical model along a microchannel. The validity of the numerical model was verified by a comparison between numerical and experimental results. The distributions of temperature, velocity, and concentration along a microchannel were predicted by the numerical results. The narrower middle width and wider outside width of the channel having the fixed length contribute to improve the focusing performance of the device. However, too narrow middle width of the channel generates a higher temperature which can cause the problems including sample denaturation and buffer solution boiling. Therefore, the channel geometry should be optimized to prevent these problems. The optimal widths of the microchannel for the improvement on TGF were proposed and this model can be easily applied to lab-on-a-chip (LOC) applications where focusing is required based on its simple design.

A new quasi-3D sinusoidal shear deformation theory for functionally graded plates

  • Benchohra, Mamia;Driz, Hafida;Bakora, Ahmed;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.19-31
    • /
    • 2018
  • In this paper, a new quasi-3D sinusoidal shear deformation theory for functionally graded (FG) plates is proposed. The theory considers both shear deformation and thickness-stretching influences by a trigonometric distribution of all displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower faces of the plate without employing any shear correction coefficient. The advantage of the proposed model is that it posses a smaller number of variables and governing equations than the existing quasi-3D models, but its results compare well with those of 3D and quasi-3D theories. This benefit is due to the use of undetermined integral unknowns in the displacement field of the present theory. By employing the Hamilton principle, equations of motion are obtained in the present formulation. Closed-form solutions for bending and free vibration problems are determined for simply supported plates. Numerical examples are proposed to check the accuracy of the developed theory.

Impact of porosity distribution on static behavior of functionally graded plates using a simple quasi-3D HSDT

  • Farouk Yahia Addou;Fouad Bourada;Mustapha Meradjah;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • The bending of a porous FG plate is discussed in this study using a novel higher quasi-3D hyperbolic shear deformation theory with four unknowns. The proposed theory takes into consideration the normal and transverse shear deformation effect and ensures the parabolic distribution of the transverse stresses through the thickness direction with zero-traction at the top and the bottom surfaces of the structure. Innovative porous functionally graded materials (FGM) have through-thickness porosity as a unique attribute that gradually varies with their qualities. An analytical solution of the static response of the perfect and imperfect FG plate was derived based on the virtual work principle and solved using Navier's procedure. The validity and the efficiency of the current model is confirmed by comparing the results with those obtained by others solutions. The comparisons showed that the present model is very efficient and simple in terms of computation time and exactness. The impact of the porosity parameter, aspect ratio, and thickness ratio on the bending of porous FG plate is shown through a discussion of several numerical results.

Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory

  • Daouadj, Tahar Hassaine;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.49-63
    • /
    • 2017
  • This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be noticed.

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution

  • Mekerbi, Mohamed;Benyoucef, Samir;Mahmoudi, Abdelkader;Bourada, Fouad;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.513-524
    • /
    • 2019
  • The present article deals with thermal buckling of functionally graded plates with porosity and resting on elastic foundation. The basic formulation is based on quasi 3D theory. The present theory contains only four unknowns and also accommodates the thickness stretching effect. Porosity-dependent material coefficients of the plate are compositionally graded throughout the thickness according to a modified micromechanical model. Different patterns of porosity distributions are considered. The thermal loads are assumed to be uniform, linear and non-linear temperature rises through the thickness direction. The plate is assumed to be simply supported on all edges. Various numerical examples are given to check the accuracy and reliability of the present solution, in which both the present results and those reported in the literature are provided. In addition, several numerous new results for thick FG plates with porosity are also presented.

Analysis of Body Induced Current in Middle Frequency Range Using Quasi-Static FDTD (중간주파수 대역에서 준정적(Quasi-Static) FDTD 기법을 이용한 인체 유도전류 분석)

  • Byun, Jin-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.141-149
    • /
    • 2009
  • In this paper, quasi-static FDTD method is implemented by FORTRAN programming, and it is used for analysis of body induced current in middle frequencies. The quasi-static FDTD program is validated by comparing the calculation result with analytic solution of the test model, to which it is difficult to apply conventional FDTD. It is confirmed that the time-step is reduced by $5.68{\times}10^6$ times. Using validated numerical technique, body induced current distribution in high resolution 3-D human model is calculated for 20[kHz] magnetic field exposure and 1[MHz] electric field exposure. Also, the effect of grounding condition of both feet on the distribution and amplitude of the induced current is analyzed. It is expected that this research can be applied to various fields including safety assessment of body induced current and development of diagnosis devices using bio-electricity.

Numerical Simulation of Nitrogen Discharge at Medium Pressure between Point-Plane Electrodes (침-평판 전극 사이에서 중간 압력 질소 방전의 시뮬레이션)

  • Koh, Wook-Hee;Park, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.487-494
    • /
    • 2008
  • The numerical simulation of point-to-plane discharge of nitrogen at medium pressure has been achieved by a quasi-2d numerical model. In the model, we calculate the distributions of electric charges which are varying as temporal and space and determine the electric field depending on space charge distribution by solving Poisson's equation. The continuity equations are treated numerically by using FCT (Flux-Corrected Transport) Algorithm and FEM (Finite Element Method). The numerical simulation results make us to understand the physical characteristics of nitrogen discharge at 50 torr. The comparison with experimental results[1] shows a good qualitative agreement.

Fracture properties of concrete using damaged plasticity model -A parametric study

  • Kalyana Rama, J.S.;Chauhan, D.R.;Sivakumar, M.V.N;Vasan, A.;Murthy, A. Ramachandra
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.59-69
    • /
    • 2017
  • The field of fracture mechanics has gained significance because of its ability to address the behaviour of cracks. Predicting the fracture properties of concrete based on experimental investigations is a challenge considering the quasi-brittle nature of concrete. So, there is a need for developing a standard numerical tool which predicts the fracture energy of concrete which is at par with experimental results. The present study is an attempt to evaluate the fracture energy and characteristic length for different grades of concrete using Concrete Damage Plasticity (CDP) model. Indian Standard and EUROCODE are used for the basic input parameters of concrete. Numerical evaluation is done using Finite Element Analysis Software ABAQUS/CAE. Hsu & Hsu and Saenz stress-strain models are adopted for the current study. Mesh sensitivity analysis is also carried to study the influence of type and size of elements on the overall accuracy of the solution. Different input parameters like dilatation angle, eccentricity are varied and their effect on fracture properties is addressed. The results indicated that the fracture properties of concrete for various grades can be accurately predicted without laboratory tests using CDP model.