• Title/Summary/Keyword: quartz vein

Search Result 156, Processing Time 0.027 seconds

Occurrence of Placer Gold Deposits from the Takaoi Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 따까오이 지역 사금광상의 산출상태)

  • Kim In-Joon;Lee Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.191-212
    • /
    • 2006
  • Placer gold deposits is mainly distributed in the Takaoi area. The alluvium is unconsolidated or semiconsolidated deposit consisting of gravel, sand, and soil beds in ascending order. They unconformably overlies the Carboniferous-Permian schist and Cretaceous granodiorite substratum. Based on detailed facies analysis, the alluvium can be interpreted as a typical fluvial deposits containing gravel and sand beds of channel-fill unit and soil deposit of floodplain. Gold grains are included mainly in the gravel bed and vein quartz is only contained gold among all kinds of gravels. These features indicates that the source rock of the gold grain is vein quartz and gold grains are separated from vein quartz during transport and abrasion. The reserves of gold in this area reach to at least 792 kg.

Occurrence and Chemical Composition of Ti-bearing Minerals from Drilling Core (No.04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 함 티타늄 광물들의 산상과 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.185-197
    • /
    • 2023
  • The Gubong Au-Ag deposit consists of eight lens-shaped quartz veins. These veins have filled fractures along fault zones within Precambrian metasedimentary rock. This has been one of the largest deposits in Korea, and is geologically a mix of orogenic-type and intrusion-related types. Korea Mining Promotion Corporation drilled into a quartz vein (referred to as the No. 6 vein) with a width of 0.9 m and a grade of 27.9 g/t Au at a depth of -728 ML by drilling (No. 90-12) in the southern site of the deposit, To further investigate the potential redevelopment of the No. 6 vein, another drilling (No. 04-1) was carried out in 2004. In 2004, samples (wallrock, wallrock alteration and quartz vein) were collected from the No. 04-1 drilling core site to study the occurrence and chemical composition of Ti-bearing minerals (ilmenite, rutile). Rutile from mineralized zone at a depth of -275 ML occur minerals including K-feldspar, biotite, quartz, calcite, chlorite, pyrite in wallrock alteration zone. Ilmenite and rutile from ore vein (No. 6 vein) at a depth of -779 ML occur minerals including white mica, chlorite, apatite, zircon, quartz, calcite, pyrrhotite, pyrite in wallrock alteration zone and quartz vein. Based on mineral assemblage, rutile was formed by hydrothermal alteration (chloritization) of Ti-rich biotite in the wallrock. Chemical composition of ilmenite has maximum values of 0.09 wt.% (HfO2), 0.39 wt.% (V2O3) and 0.54 wt.% (BaO). Comparing the chemical composition of rutile at a depth -275 ML and -779 ML, Rutile at a depth of -779 ML is higher contents (WO3, FeO and BaO) than rutile at a depth of -275 ML. The substitutions of rutile at a depth of -275 ML and -779 ML are as followed : rutile at a depth of -275 ML Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4++ (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, rutile at a depth of -779 ML 2 (Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf 4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+, respectively. Based on these data and chemical composition of rutiles from orogenic-type deposits, rutiles from Gubong deposit was formed in a relatively oxidizing environment than the rutile from orogenictype deposits (Unsan deposit, Kori Kollo deposit, Big Bell deposit, Meguma gold-bearing quartz vein).

Occurrence and Chemical Composition of Chlorite and White Mica from Drilling Core (No. 04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 녹니석과 백색운모의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.273-288
    • /
    • 2023
  • The Gubong Au-Ag deposit, which has been one of the largest deposits (Unsan, Daeyudong, Kwangyang) in Korea, consists of eight lens-shaped quartz veins (a mix of orogenic-type and intrusion-related types) that filled fractures along fault zones within Precambrian metasedimentary rock. Korea Mining Promotion Corporation found a quartz vein (referred to as the No. 6 vein with a grade of 27.9 g/t Au and a width of 0.9 m) at a depth of -728 ML by drilling (No. 90-12) conducted in 1989. Korea Mining Promotion Corporation conducted drilling (No. 04-1) in 2004 to investigate the redevelopment's possibility of the No. 6 vein. The author studied the occurrence and chemical composition of chlorite and white mica using wallrock, wallrock alteration and quartz vein samples collected from the No. 04-1 drilling core in 2004. The alteration of studied samples occurs chloritization, sericitization, silicification and pyritization. Chlorite and white mica from mineralized zone at a depth of -275 ML occur with quartz, K-feldspar, calcite, rutile and pyrite in wallrock alteration zone and quartz vein. Chlorite and white mica from ore vein (No. 6 vein) at a depth of -779 ML occur with quartz, calcite, apatite, zircon, rutile, ilmenite, pyrrhotite and pyrite in wallrock alteration zone and quartz vein. Chlorite from a depth of -779 ML has a higher content of Al and Mg elements and a lower content of Si and Fe elements than chlorite from a depth of -275 ML. Also, Chlorites from a depth of -275 ML and -779 ML have higher content of Si element than theoretical chlorite. Compositional variation in chlorite from a depth of -275 ML was mainly caused by phengitic or Tschermark substitution [Al3+,VI + Al3+,IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], but compositional variation from a depth of -779 ML was mainly caused by octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. The interlayer cation site occupancy (K+Na+Ca+Ba+Sr = 0.76~0.82 apfu, 0.72~0.91 apfu) of white mica from a depth of -275 ML and -779 ML have lower contents than theoretical dioctahedral micas, but octahedral site occupancy (Fe+Mg+Mn+Ti+Cr+V+Ni = 2.09~2.13 apfu, 2.06~2.14 apfu) have higher contents than theoretical dioctahedral micas. Compositional variation in white mica from a depth of -275 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], illitic substitution and direct (Fe3+)VI <-> (Al3+)VI substitution. But, compositional variation in white mica from a depth of -779 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution.

Ore Minerals and Genetic Environments of Quartz Veins from the Hwawon Area, Haenam, Korea (전남 화원일대의 석영맥에서 산출되는 광석광물과 이의 생성환경)

  • Yoo, Bong-Chul;Oh, Jin-Yong;Kang, Heung-Suk;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.583-595
    • /
    • 2006
  • Quartz veins from the Hwawon area are an epithermal quartz vein that is filling the fault zone within Precambrian metasedimentary rocks and Jurassic granite. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(propylitic and argillic zones) such as epidote, chlorite, illite, sericite and sulfides such as pyrite, sphalerite, chalcopyrite, galena, bornite, cubanite, argentian tetrahedrite, Pb-Ag-S system and Pb-Te-S system. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperatures and salinity of hypogene stage range from $291.2^{\circ}C$ to $397.3^{\circ}C$ and from 0.0 to 9.3 wt.% eq. NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Oxygen($-0.7{\sim}3.5%_{\circ}$(white quartz: $-0.7{\sim}3.5%_{\circ}$, transparent quartz: $2.4%_{\circ}$)) and hydrogen($-70{\sim}55%_{\circ}$(white quartz: $-70{\sim}55%_{\circ}$, transparent quartz: $-62%_{\circ}$)) isotopic composition indicates that hydrothermal fluids were derived from magmatic and evolved by mixing with meteoric water during mineralization.

Genetic Environments at the Ssangjeon Tungsten-bearing Hydrothermal Vein Deposit (쌍전 함 텅스텐 열수 맥상광상의 생성환경)

  • Sunjin Lee;Sang-Hoon Choi
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.689-699
    • /
    • 2022
  • The Ssangjeon tungsten deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz veins were formed by narrow open-space filling of parallel and subparallel fractures in the metasedimentary rocks as Wonnam formation, Buncheon granite gneiss, amphibolite and/or pegmatite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren quartz vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of arsenopyrite with pyrite; middle, characterized by introduction of wolframite and scheelite with Ti-Fe-bearing oxides and base-metal sulfides; late, marked by Bi-sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥370℃) and later lower temperatures (≈170℃) from H2O-CO2-NaCl fluids with salinities between 18.5 to 0.2 equiv. wt. % NaCl of Ssangjeon hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥370℃ to ≈170℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Ssangjeon hydrothermal system with increasing paragenetic time.

On the Prospecting Plans of Mulkum Iron Mine Viewed by the Character and Mode of Occurrence of Ore bodyies (물금철산의 광체발달 양상과 그에 따른 탐광계획)

  • Kim, Seon Eok;Kang, Yang Pyeong
    • Economic and Environmental Geology
    • /
    • v.2 no.1
    • /
    • pp.13-33
    • /
    • 1969
  • The Mulkum mine, located in Mulkum-myon, Yangsan-Kun, Kyeongsang Province, is one of the biggest iron mine in Korea. The geology of this mine and its vicinity consists of Chusan andesitic rocks and Datae-dong andesite porphyry of the Kyeongsang System which were intruded by biotite granite widely distributed near the vicinity of Mulkum-ni. The ore deposits, embedded in Dotae-dong andesite porphyry, are fissure-filling vein type in origin. Up to present ore bodies of Main vein, No. 2 vein, Eastern No. 1, 2 vein and Western No. 1 vein are exploited. Generally the veins strike N 10-25 E and dip to 60-90 SE. The proved length of vein is more than 500 meters and its depth 150 meters in Main vein with 3-4 meters of thickness in average. Ore minerals are mainly magnetite and locally associated with small amounts of hematite, sphecularite and chalcopyrite. Gangue minerals are quartz, epidote, chlorite, pyroxene, and garnet, etc. The modes of occurrence of vein are as follow; 1. Branching and parallel vein patterns are observed around main shaft in -1 level. 2. Multiple cymoid loops and subrectangular vein patterns are observed around main shaft in -2 level. 2. Single vein patterns are observed in -3 and -5 level. The ore-shoots plunge northeasterly about 20-30 degrees. In conclusion, the tectonically fractured zone belongs to the poorly mineralized zone and shoots are formed as single vein type. The general trends of one-shoots must be applied the prospecting of the deep-seated ore body in the deposits.

  • PDF

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Hydrothermal Evolution for the Inseong Au-Ag Deposit in the Hwanggangri Metallogenic Region, Korea (황강리 광화대 인성 금-은 광상의 광화 유체 진화)

  • Cho, Hye Jeong;Seo, Jung Hun;Lee, Tong Ha;Yoo, Bong Chul;Lee, Hyeonwoo;Lee, Kangeun;Lim, Subin;Hwang, Jangwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.307-323
    • /
    • 2018
  • The Inseong Au-Ag and base metal deposit, located in Chungchengbuk-do, Korea, consists of series of quartz veins filling fissures. The deposit occurs in Hwanggangri meta-sediment formation, a lime pebble-bearing phyllite, in the Okcheon Supergroup. Abundant ore minerals in the deposit are pyrite, arsenopyrite, sphalerite, chalcopyrite and galena. The gangue minerals are quartz, calcite and chlorite. Hydrothermal alteration such as chlorization, silicitication, sericitization and carbonitization can be observed around the quartz veins. 4 vein stages can be distinguished based on its paragenetic sequence, vein structure, alteration features and ore minerals. Microthermometry of the fluid inclusion assemblages occur in the veins are conducted to reconstruct a hydrothermal P-T evolution. Fluid inclusions in clean and barren quartz vein in stage 1 have Th of $270{\sim}342^{\circ}C$ and salinity of 1.7~6.4 (NaCl eqiv.) wt%. Euhedral quartz crystal in stage 2 have Th of $108{\sim}350^{\circ}C$ and salinity of 0.5~7.5 wt%. Barren milky quartz vein in stage 3 have Th of $174{\sim}380^{\circ}C$ and salinity of 0.8~7.5 wt%. Calcite vein in stage 4 have Th of $103{\sim}265^{\circ}C$ and salinity of 0.7~6.4 wt%. Calculated paleodepth about 0.5~1.5 km (hydrostatic pressure) indicate epithermal ore-forming condition. Shallow depth but relatively high-T hydrothermal fluids possibly create a steep geothermal gradient, sufficient for base metal precipitation in the Inseong deposit.

Studies on the Skarn-type Ore Deposits and Skarn Minerals in Gyeongnam Province (경남지구(慶南地區)의 스카른형(型) 광상(鑛床)의 성인(成因)과 스카른광물(鑛物)에 관(關)한 연구(硏究))

  • Woo, Young Kyun;Lee, Min Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.1-16
    • /
    • 1982
  • Many skarn type iron ore deposits are distributed in Kimhae-Mulgeum area of Gyeongnam Province. Integrated field, mineralogic, geochemical and fluid inclusion studies were undertaken to illustrate the character and origin of the ores in this area. The iron ore deposits in this area are NS or NNE trending fracture filling magnetite veins which are developed in andesitic rocks near the contact with late Cretaceous micrographic granite bodies. Symmetrically zoned skarns are commonly developed in the magnetite veins of this area. Zoning of skarn from center to margin of the vein are as follows; garnet quartz skarn-epidote skarn-epidote orthoclase skarn-altered andesitic rocks. Major ore mineral is magnetite and small amount of hematite, pyrite, pyrrhotite, chalcopyrite and sphalerite are associated. Vein paragenesis reveals four depositional stages; 1) skarn stage, 2) iron sulfide and oxide stage, 3) skarn stage, 4) sulfide stage Minute halite-bearing polyphase inclusions and liquid inclusions are contained in quartz. Filling temperatures range from $257^{\circ}$ to $370^{\circ}C$.

  • PDF

Study on the Temperature and the Origin of Mineralization at the Samkwang Au Deposits (삼광(三光) 금(金) 광상(鑛床)의 광화(鑛化) 온도(溫度) 및 근원(根源)에 관關(한) 연구(硏究))

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 1986
  • The Samkwang mine is one of gold deposits distributed mainly in the southwestern province (Chungnam) of the Korean peninsula. Golds occur in quartz veins aged of $223{\pm}4MA$ according to K-Ar age dating from muscovite in a pegmatitic quartz vein. Quantz veins intrude Precambrian biotite-granite gneiss and mica schist of unknown age. Fluid inclusions in the quartz show a range of homogenization temperatures from 159 to $274^{\circ}C$. A calculated temperature from the isotopes of the galena-sphalerite pair is $375^{\circ}C$. Two phases-fluid inclusions homogenized either by liquid or vapor phase are frequently observed in specimens over $260^{\circ}C$, which may indicate the boiling of the fluids. Pressure of formation of the quartz veins inferred by the homogenization temperatures of liquid-$CO_2$ bearing fluid is 1kb. Based on these data, it is assumed that the temperature of the formation of the Samkwang mine may lie in between $350^{\circ}-230^{\circ}C$. ${\delta}^{34}S_{{\Sigma}s}$ values of sulphide minerals show narrow range of +2.1 to +4.6, and show a trend of enrichments of $^{34}S$ in the fluid from deep to the surface. ${\delta}^{34}S_{{\Sigma}s}$ in the fluid estimated is less than 3 permil, suggesting sulphur fluid originated from the magma.

  • PDF