DOI QR코드

DOI QR Code

Occurrence and Chemical Composition of Ti-bearing Minerals from Drilling Core (No.04-1) at Gubong Au-Ag Deposit Area, Republic of Korea

구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 함 티타늄 광물들의 산상과 화학조성

  • Bong Chul Yoo (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 희소금속광상연구센터)
  • Received : 2023.09.04
  • Accepted : 2023.09.19
  • Published : 2023.09.30

Abstract

The Gubong Au-Ag deposit consists of eight lens-shaped quartz veins. These veins have filled fractures along fault zones within Precambrian metasedimentary rock. This has been one of the largest deposits in Korea, and is geologically a mix of orogenic-type and intrusion-related types. Korea Mining Promotion Corporation drilled into a quartz vein (referred to as the No. 6 vein) with a width of 0.9 m and a grade of 27.9 g/t Au at a depth of -728 ML by drilling (No. 90-12) in the southern site of the deposit, To further investigate the potential redevelopment of the No. 6 vein, another drilling (No. 04-1) was carried out in 2004. In 2004, samples (wallrock, wallrock alteration and quartz vein) were collected from the No. 04-1 drilling core site to study the occurrence and chemical composition of Ti-bearing minerals (ilmenite, rutile). Rutile from mineralized zone at a depth of -275 ML occur minerals including K-feldspar, biotite, quartz, calcite, chlorite, pyrite in wallrock alteration zone. Ilmenite and rutile from ore vein (No. 6 vein) at a depth of -779 ML occur minerals including white mica, chlorite, apatite, zircon, quartz, calcite, pyrrhotite, pyrite in wallrock alteration zone and quartz vein. Based on mineral assemblage, rutile was formed by hydrothermal alteration (chloritization) of Ti-rich biotite in the wallrock. Chemical composition of ilmenite has maximum values of 0.09 wt.% (HfO2), 0.39 wt.% (V2O3) and 0.54 wt.% (BaO). Comparing the chemical composition of rutile at a depth -275 ML and -779 ML, Rutile at a depth of -779 ML is higher contents (WO3, FeO and BaO) than rutile at a depth of -275 ML. The substitutions of rutile at a depth of -275 ML and -779 ML are as followed : rutile at a depth of -275 ML Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4++ (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, rutile at a depth of -779 ML 2 (Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf 4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+, respectively. Based on these data and chemical composition of rutiles from orogenic-type deposits, rutiles from Gubong deposit was formed in a relatively oxidizing environment than the rutile from orogenictype deposits (Unsan deposit, Kori Kollo deposit, Big Bell deposit, Meguma gold-bearing quartz vein).

구봉 금-은 광상은 선캠브리아기의 변성퇴적암류내에 발달된 열극대를 충진한 8개조의 석영맥으로 구성된 조산형과 intrusion-related형이 혼합된 광상으로 과거 한국에서 가장 큰 금-은 광상들 중의 하나였다. 대한광업진흥공사는 이 광상의 남부에서 시추(90-12)를 통한 심도 -728 ML에서 27.9 g/t Au 품위를 갖는 0.9 m 폭을 갖는 석영맥(6호맥)을 착맥하였으며 2004년 재차 6호맥의 재개발 가능성 검토를 위해 시추(04-1)를 수행하였다. 2004년 시추 현장에서 모암, 모암변질 및 석영맥 시료들(04-1)을 채취하여 함 티타늄 광물들(티탄철석, 금홍석)의 산상과 화학조성을 연구하였다. 심도 -275 ML의 광화대에서 관찰되는 금홍석은 모암변질대에서 칼리장석, 흑운모, 석영, 방해석, 녹니석 및 황철석과 함께 산출된다. 심도 -779 ML의 광맥(6호맥)에서 관찰되는 티탄철석과 금홍석은 모암변질대와 석영맥에서 백색운모, 녹니석, 인회석, 저어콘, 석영, 방해석, 자류철석 및 황철석과 함께 산출된다. 이들 광물조합을 토대로, 금홍석은 열수 용액에 의한 모암내 Ti을 풍부하게 함유한 흑운모의 열수변질작용(녹니석화작용) 시 형성된 것으로 생각된다. 티탄철석은 최대 0.09 wt.% (HfO2), 0.39 wt.% (V2O3), 0.54 wt.% (BaO) 함량이 함유되어 있다. 심도 -275 ML과 -779 ML에서 산출되는 금홍석의 화학조성을 비교하면, 심도 -779 ML의 광맥(6호맥)의 금홍석에서 WO3, FeO 및 BaO 원소들의 함량이 높다. 이들 미량원소들은 심도 -275 ML의 금홍석 Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4+ + (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, 심도 -779 ML의 금홍석 2(Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+로써 치환관계가 있었다. 이들 자료와 기 연구된 조산형 금 광상에서 산출되는 함 티타늄 광물들의 화학조성과 비교 검토 본 결과, 구봉 광상의 금홍석들은 다른 조산형 금 광상(운산 광상, Kori Kollo 광상, Big Bell 광상, Meguma 함 금 석영맥)들에서 산출되는 금홍석들보다 상대적으로 산화 환경에서 형성되었음을 알 수 있다.

Keywords

Acknowledgement

우선 이 연구를 수행할 수 있게 시추 현장에서 시료채취를 할 수 있게 해 주신 대한광업진흥공사(현 한국광해광업공단) 고 강흥석 차장님께 진심으로 감사드립니다. 이 연구는 한국지질자원연구원 기본사업인 "K-배터리 원료광물(Ni, Co) 잠재성 평가 및 활용기술 개발(23-3215)"와 "국내 기반암 잠재적 유해원소 통합관리 및 유해성 평가(23-3121)" 과제 지원을 받아 수행되었다. 바쁘신 와중에도 이 논문의 미비점을 지적, 수정하여 주신 편집위원장님, 책임편집위원님, 서정훈 교수님 및 익명의 심사위원님께 깊이 감사드립니다.

References

  1. Agangi, A., Reddy, S.M., Plavsa, D., Fougerouse, D., Clark, C., Roberts, M. and Johnson, T.E., 2019, Antimony in rutile as a pathfinder for orogenic gold deposits. Ore Geology Reviews, 106, 1-11. https://doi.org/10.1016/j.oregeorev.2019.01.018
  2. Bromiley, G.D. and Hilairet, N., 2005, Hydrogen and minor element incorporation in synthetic rutile. Mineralogical Magazine, 69, 345-358. https://doi.org/10.1180/0026461056930256
  3. Carruzzo, S., Clarke, D.B., Pelrine, K.M. and MacDonald, M.A., 2006, Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 44, 715-729. https://doi.org/10.2113/gscanmin.44.3.715
  4. Cave, B.J., Stepanov, A.S., Craw, D., Large, R.R., Halpin, J.A. and Thompson, J., 2015, Release of trace elements through the sub-greenschist facies breakdown of detrital rutile to metamorphic titanite in the Otago schist, New Zealand. Canadian Mineralogist, 53, 379-400. https://doi.org/10.3749/canmin.1400097
  5. Cheon, C.K. and Oh, M.S., 1970, Geology and ore deposits of Kubong gold mine. Korean Institute of Mining Geology Journal, 3, 169-174.
  6. Clark, J.R. and Williams-Jones, A.E., 2004, Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-projet SC2, Montreal, Canada. 17p.
  7. Craw, D. and MacKenzie, D., 2016, Macraes orogenic gold deposit (New Zealand) Origin and development of a world class gold mine. Springer, 127p.
  8. Craw, D., Upton, P. and Mackenzie, D.J., 2009, Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand. New Zealand Journal of Geology and Geophysics, 52, 11-26. https://doi.org/10.1080/00288300909509874
  9. Deer, W.A., Howie, R.A. and Zussman, J., 1992, An introduction to the rock-forming minerals. Longman Scientific & Technical, 696p.
  10. Dostal, J., Kontak, D.J. and Chatterjee, A.K., 2009, Trace element geochemistry of scheelite and rutile from metaturbidite- hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications. Mineralogy and Petrology, 97, 95-109. https://doi.org/10.1007/s00710-009-0067-0
  11. Doyle, M.C., Fletcher, I.R., Foster, J., Large, R.R., Mathur, R., McNaughton, N.J., Meffre, S., Muhling, J.R., Phillips, D. and Rasmussen, B., 2015, Geochronological constraints on the Tropicana gold deposit and Albany-Fraser orogen, Western Australia. Economic Geology, 110, 355-386. https://doi.org/10.2113/econgeo.110.2.355
  12. Forster, B., Aulbach, S., Symes, C., Gerdes, A., Hofer, H.E. and Chacko, T., 2017, A reconnaissance study of Ti-minerals in cratonic granulite xenoliths and their potential as recorders of lower crust formation and evolution. Journal of Petrology, 58, 2007-2034. https://doi.org/10.1093/petrology/egx080
  13. Graham, J. and Morris, R.C., 1973, Tungsten- and antimonysubstituted rutile. Mineralogical Magazine, 39, 470-473. https://doi.org/10.1180/minmag.1973.039.304.11
  14. Hamisi, J., MacKenzie, D., Pitcairn, I., Blakemore, H., Zack, T. and Craw, D., 2017, Hydrothermal footprint of the Birthday Reef, Reefton goldfield, New Zealand. New Zealand Journal of Geology and Geophysics, 60, 59-72. https://doi.org/10.1080/00288306.2016.1274332
  15. Hassan, W.F., 1994, Geochemistry and mineralogy of Ta-Nb rutile from Peninsular Malaysia. Journal of Southeast Asian Earth Sciences, 10, 11-23. https://doi.org/10.1016/0743-9547(94)90005-1
  16. KORES (Korea Mining Promotion Corporation), 1991, Deposit drilling investigation report.
  17. KORES (Korea Mining Promotion Corporation), 1992, Deposit drilling investigation report.
  18. KORES (Korea Mining Promotion Corporation), 2004, Deposit drilling investigation report.
  19. https://informarketcenter.tistory.com.
  20. https://www.goldfunction.com/uses-of-gold.
  21. Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S., Kronz, A., Munker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E. and von Eynatten, H., 2009, Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chemical Geology, 261, 346-369. https://doi.org/10.1016/j.chemgeo.2008.04.012
  22. MacChesney, J.N. and Muan, A., 1959, Studies in the system iron oxide-titanium oxide. American Mineralogist, 44, 926-945.
  23. Mclnnes, B., Brown, A., Evans, N., McNaughton, N., Liffers, M. and Wingate, M., 2015, Integration of electron, laser and ion microprobe techniques to create an open source digital mineral library of Western Australia. Goldschmidt2015, Session 12a/3016.
  24. Meinhold, G., 2010, Rutile and its applications in earth sciences. Earth-Science Reviews, 102, 1-28. https://doi.org/10.1016/j.earscirev.2010.06.001
  25. Murad, E., Cashion, J.D., Noble, C.J. and Pilbrow, J.R., 1995, The chemical state of Fe in rutile from an albitite in Norway. Mineralogical Magazine, 59, 557-560. https://doi.org/10.1180/minmag.1995.059.396.17
  26. Nichols, B.I., 2016, Hydrothermal alteration mineralogy and zonation in the orogenic Frog's Leg gold deposit, Yilgarn craton, Western Australia. Master thesis, University of Western Australia,188p.
  27. Plavsa, D., Reddy, S.M., Agangi, A., Clark, C., Kylander- Clark, A. and Tiddy, C.J., 2018, Microstructural, trace element and geochronological characterization of TiO2 polymorphs and implications for mineral exploration. Chemical Geology, 476, 130-149. https://doi.org/10.1016/j.chemgeo.2017.11.011
  28. Porter, J.K., McNaughton, N.J., Evans, N.J. and McDonald, B.J., 2020, Rutile as a pathfinder for metals exploration. Ore Geology Reviews, 120, 103406.
  29. Rabbia, O.M., Hernandez, L.B., French, D.H., King, R.W. and Ayers, J.C., 2009, The El Teniente porphry Cu-Mo deposi from a hydrothermal rutile perspective. Mineralium Deposita, 44, 849-866. https://doi.org/10.1007/s00126-009-0252-4
  30. Rice, C., Darke, K. and Still, J., 1998, Tungsten-bearing rutile from the Kori Kollo gold mine Bolivia. Mineralogical Magazine, 62, 421-429. https://doi.org/10.1180/002646198547684
  31. Robinson, B.A. and Scott, J.M., 2019, Late Devonian contact metamorphism and a possible upper age to gold mineralisation in the northernmost portion of the Reefton goldfield. New Zealand Journal of Geology and Geophysics, 62, 121-130. https://doi.org/10.1080/00288306.2018.1534745
  32. Sakoma, E.M. and Martin, R.F., 2002, Oxidation-induced postmagmatic modifications of primary ilmenite, NYGrelated aplite dyke, Tibchi Complex, Kalato, Nigeria. Mineralogical Magazine, 66, 591-604. https://doi.org/10.1180/0026461026640051
  33. Scott, K.M., 1988, Phyllosilicate and rutile compositions as indicators of Sn specialization in some southeastern Australian granites. Mineralium Deposita, 23, 159-165. https://doi.org/10.1007/BF00204294
  34. Scott, K.M., 2005, Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, New South Wales, Australia. Geochemistry: Exploration, Environment, Analysis, 5, 247-253. https://doi.org/10.1144/1467-7873/03-055
  35. Scott, K.M. and Radford, N.W., 2007, Rutile compositions at the Bg Bell Au deposit as a guide for exploration. Geochemistry: Exploration, Environment, Analysis, 7, 353-361. https://doi.org/10.1144/1467-7873/07-135
  36. Scott, K.M., Radford, N.W., Hough, R.M. and Reddy, S.M., 2011, Rutile compositions in the Kalgoorlie Goldfields and their implications for exploration. Australian Journal of Earth Sciences, 58, 803-812. https://doi.org/10.1080/08120099.2011.600334
  37. Smith, D. and Perseil, E.-A., 1997, Sb-rich rutile in the manganese concentrations at St.Marcel-Praborna, Aosta Valley, Italy; petrology and crystal-chemistry. Mineralogical Magazine, 61, 655-669. https://doi.org/10.1180/minmag.1997.061.408.04
  38. Thompson, J.F.H., Sillitoe, R.H., Baker, T., Lang, J.R. and Mortensen, J.K., 1999, Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34, 323-334. https://doi.org/10.1007/s001260050207
  39. Urban, A.J., Hoskins, B.F. and Grey, I.E., 1992, Characterization of V-Sb-W-bearing rutile from the Hemlo gold deposit, Ontario. Canadian Mineralogist, 30, 319-326.
  40. Williams, S.A. and Cesbron, F.P., 1977, Rutile and apatite: useful prospecting guides for porphyry copper deposits. Mineralogical Magazine, 41, 288-292. https://doi.org/10.1180/minmag.1977.041.318.18
  41. Yoo, B.C., 2000, Mineralogy and geochemical study of some mesothermal gold-silver-bearing vein deposits in the Yugu-Kwangchun mine district, Republic of Korea. PhD thesis, Chungnam National University, 237p.
  42. Yoo, B.C., 2009, Mineralization characteristic study of some mesothermal Au-Ag deposit in the Cheongyang area, Chungnam. Journal of the Mineralogical Society of Korea (Minerals and Industry). 22, 1-11.
  43. Yoo, B.C., 2020a, Occurrence and chemical composition of white mica and ankerite from laminated quartz vein of Samgwang Au-Ag deposit, Republic of Korea. Korean Journal of Mineralogy and Petrology, 33, 53-64.
  44. Yoo, B.C., 2020b, Occurrence and chemical composition of W-bearing rutile from the Unsan Au deposit. Korean Journal of Mineralogy and Petrology, 33,115-127.
  45. Yoo, B.C., Choi, S.G. and Lee, H.K., 2002, Mode of occurrence and chemical composition of electrums from the Gubong gold-silver deposits, Republic of Korea. Economic and Environmental Geology, 35, 181-201.
  46. Yoo, B.C., Lee, H.K. and White, N.C., 2006, Gold-bearing mesothermal veins from the Gubong mine, Cheongyang Gold District, Republic of Korea: Fluid inclusion aand stable isotope studies. Economic Geology, 101, 883-901. https://doi.org/10.2113/gsecongeo.101.4.883
  47. Yoo, B.C., Lee, H.K. and White, N.C., 2010, Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)-a mesothermal, vein-hosted gold-silver deposit. Mineralium Deposita, 45, 161-187. https://doi.org/10.1007/s00126-009-0268-9
  48. Zack, T., Kronz, A., Foley, S.F. and Rivers, T., 2002, Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184, 97-122. https://doi.org/10.1016/S0009-2541(01)00357-6