• Title/Summary/Keyword: quantum phase

Search Result 186, Processing Time 0.024 seconds

Control the Au(111) Work Function by Substituted Aromatic Thiol Self-Assembled Monolayers

  • Gang, Hun-Gu;Ito, Eisuke;Okabayashi, Youichi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.243-243
    • /
    • 2012
  • Self-assembled monolayers (SAMs) prepared by aromatic thiols on gold surfaces have much larger potential for electronic device applications due to their electronic properties. In this study, the formation and structures of SAMs prepared by benzenethiol (BT), toluenethiol (TT), 2-fluorobenzenethiol (2-FBT), 3-fluorobenzenethiol (3-FBT), 4-fluorobenzenethiol (4-FBT), 4-chlorobenzenethiol (4-CBT), 4-fluorobenzenemethanethiol (4-FBMT), and 4-chlorobenzenemethanethiol (4-CBMT) on Au(111) were examined using scanning tunneling microscopy (STM) and Kelvin probe (KP) to explore the structure and electronic interface properties of eight differently substituted aromatic thiol SAMs on Au(111). And these values are compared with gas phase dipole moments computed by quantum chemical calculations for individual thiol molecules. It was revealed that all eight thiol-molecules form uniform SAMs on Au(111) at $75^{\circ}C$ compared to lower solution temperature by STM observation. The work function change obtained in the KP measurements and calculated molecular dipole moments have the linear relationship while the 4-FBMT and 4-CBMT deviate from this tendency.

  • PDF

The Effect of Sulfurization Temperature on CuIn(Se,S)2 Solar Cells Synthesized by Electrodeposition

  • Kim, Dong-Uk;Yun, Sang-Hwa;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.97-97
    • /
    • 2014
  • The properties of thin film solar cells based on electrodeposited $CuIn(Se,S)_2$ were investigated. The proposed solar cell fabrication method involves a single-step $CuInSe_2$ thin film electrodeposition followed by sulfurization in a tube furnace to form a $CuIn(Se,S)_2$ quaternary phase. A sulfurization temperature of $450-550^{\circ}C$ significantly affected the performance of the $CuIn(Se,S)_2$ thin film solar cell in addition to its composition, grain size and bandgap. Sulfur(S) substituted for selenium(Se) at increasing rates with higher sulfurization temperature, which resulted in an increase in overall band gap of the $CuIn(Se,S)_2$ thin film. The highest conversion efficiency of 3.12% under airmass(AM) 1.5 illumination was obtained from the $500^{\circ}C$-sulfurized solar cell. The highest External Quantum Efficiency(EQE) was also observed at the sulfurization temperature of $500^{\circ}C$.

  • PDF

A study on the InGaAsP/InP MQW-LD fabrication by the liquid phase epitaxy (액상결정성장에 의한 InGaAsP/InP MQW-ND 제작에 관한 연구)

  • 조호성;홍창희;오종환;예병덕;이중기
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.252-257
    • /
    • 1992
  • In this study, InGaAsP/InP MQW-DH wafer was grown by a vertical type LPE system and 10$\mu$m stripe MQW-LD was fabricated with the wafer. The threshold current was about 200 mA and when the cavity length of the LD was 470$\mu$m the central wavelenth of gain spectra was 1.32$\mu$m the lasing wavelength was 1.302$\mu$m which corresponded to the gain center of the quantum well thickness of 300 $\AA$.

  • PDF

Detection of Nitroaromatic Compounds with Functionalized Porous Silicon Using Quenching Photoluminescence

  • Cho, Sungdong
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.202-205
    • /
    • 2010
  • Nanocrystalline porous silicon surfaces have been used to detect nitroaromatic compounds in vapor phase. The mode of photoluminescence is emphasized as a sensing attitude or detection technique. Quenching of photoluminescence from nanocrystalline porous surfaces as a transduction mode is measured upon the exposure of nitroaromatic compounds. Reversible detection mode for nitroaromatics is, too, observed. To verify the detection afore-mentioned, photoluminescent freshly prepared porous silicons are functionalized with different groups. The mechanism of quenching of photoluminescence is attributed to the electron transfer behaviors of quantum-sized nano-crystallites in the porous silicon matrix to the analytes(nitroaromatics). An attempt has been done to prove that the surface-derivatized photoluminescent porous silicone surfaces can act as versatile substrates for sensing behaviors due to having a large surface area and highly sensitive transduction mode.

Effect of open-core screw dislocation on axial conductivity in semiconductor crystals

  • Taira, Hisao;Sato, Motohiro
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.171-182
    • /
    • 2013
  • The alternating current (AC) conductivity in semiconductor crystals with an open-core screw dislocation is studied in the current work. The screw dislocation in crystalline media results in an effective potential field which affects the electronic transport properties of the system. Therefore, from a technological view point, it is interesting to investigate properties of AC conductivity at frequencies of a few terahertz. To quantify the screw-induced potential effect, we calculated the AC conductivity of dislocated crystals using the Kubo formula. The conductivity showed peaks within the terahertz frequency region, where the amplitude of the AC conductivity was large enough to be measured in experiments. The measurable conductivity peaks did not arise in dislocation-free crystals threaded by a magnetic flux tube. These results imply different conductivity mechanisms in crystals with a screw dislocation than those threaded by a magnetic flux tube, despite the apparent similarity in their electronic eigenstates.

Schwinger Pair Production via Polons and the Origin of Stokes Phenomena

  • Kim, Sang Pyo
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1225-1230
    • /
    • 2018
  • Schwinger pair production of electrons and positrons in a strong electric field is a prediction of nonperturbative quantum field theory, in which the out-vacuum is superposed of multi-particle states of the in-vacuum. Solving the Dirac or Klein-Gordon equation in the background field, though a linear wave equation, and finding the pair-production rate is a difficult or nontrivial job. The phase-integral method has recently been introduced to compute the pair production in space-dependent electric fields, and a complex analysis method has been employed to calculate the pair production in time-dependent electric fields. In this paper, we apply the complex analysis method to a Sauter-type electric field and other hyperbolic-type electric fields that vanish in the past and future and show that the Stokes phenomena in pair production occur when the time-dependent frequency for a given momentum has finite simple poles (polons) with pure imaginary residues.

Identity-Based Key Management Scheme for Smart Grid over Lattice

  • Wangke, Yu;Shuhua, Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.74-96
    • /
    • 2023
  • At present, the smart grid has become one of the indispensable infrastructures in people's lives. As a commonly used communication method, wireless communication is gradually, being widely used in smart grid systems due to its convenient deployment and wide range of serious challenges to security. For the insecurity of the schemes based on large integer factorization and discrete logarithm problem in the quantum environment, an identity-based key management scheme for smart grid over lattice is proposed. To assure the communication security, through constructing intra-cluster and inter-cluster multi-hop routing secure mechanism. The time parameter and identity information are introduced in the relying phase. Through using the symmetric cryptography algorithm to encrypt improve communication efficiency. Through output the authentication information with probability, the protocol makes the private key of the certification body no relation with the distribution of authentication information. Theoretic studies and figures show that the efficiency of keys can be authenticated, so the number of attacks, including masquerade, reply and message manipulation attacks can be resisted. The new scheme can not only increase the security, but also decrease the communication energy consumption.

Selective growth of micro scale GaN initiated on top of stripe GaN

  • Lee, J.W.;Jo, D.W.;Ok, J.E.;Yun, W.I.;Ahn, H.S.;Yang, M.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.93-95
    • /
    • 2012
  • We report on the growth and characterization of the nano- and micro scale GaN structures selectively grown on the vertex of GaN stripes using the metal organic vapor phase epitaxy method and conventional photolithography technique. The triangular shaped nano- and micro GaN structures which have semi-polar {11-22} facets were formed only on the vertex of the lower GaN stripes. Crystalline defects reduction was observed by transmission electron microscopy for upper GaN stripes. We also have grown the InGaN/GaN multi-quantum well structures on the semi-polar facets of the upper GaN stripes. Cathodoluminescence images were taken at 366, 412 and 555 nm related to GaN band edge, InGaN/GaN layer and defects, respectively.

Development of an Open Sandwich Fluoroimmunoassay Based on FRET (FRET에 기반한 Open Sandwich Fluoroimmunoassay)

  • Wei, Quande;Lee, Moon-Kwon;Seong, Gi-Hun;Choo, Jae-Bum;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.426-432
    • /
    • 2007
  • We have developed a sensitive, one-step, homogeneous open sandwich fluoroimmunoassay (OsFIA) based on fluorescence resonance energy transfer (FRET) and luminescent semiconductor quantum dots (QDs). In this FRET assay, estrogen receptor-$\beta$ (ER-$\beta$) antigen was incubated with QD-labeled anti-ER-$\beta$ monoclonal antibody and AF (Alexa Fluoro)-labeled anti-ER polyclonal antibody for 30 minutes, followed by FRET measurement. The dye separation distance was estimated to be between $80\sim90\;{\AA}$. The present method is rapid, simple and highly sensitive, and did not require the bound/free reagent separation steps and solid-phase carriers. A concentration as low as 0.05 nM (2.65 ng/ml) receptor was detected with linearity ($R^2$ > 0.990). In addition, the assay was performed with commercial antibodies. This assay provides a convenient alternative to conventional, laborious sandwich immunoassays.

Si(111) 기판에 높은 공간밀도를 갖는 InN 양자점 핵생성 연구

  • Lee, Hyeon-Jung;Jo, Byeong-Gu;Lee, Gwan-Jae;Choe, Il-Gyu;Kim, Jin-Su;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.227-227
    • /
    • 2013
  • 본 연구에서는 Si(111) 기판에 성장온도 및 InN 증착양 변화에 따른 InN 양자점(Quantum Dot) 핵성생(Nucleation) 특성에 대해 논의한다. InN 양자점은 Nitrogen-Plasma 소스를 장착한 분자선증착기(MBE)를 이용하여 $0.103{\AA}/s$의 성장속도로 성장하였다. 성장온도를 $700^{\circ}C$에서 $300^{\circ}C$로 변환하면서 형성한 시료에서 lnN 양자점의 공간밀도는 $9.4{\times}10^7/cm^2$부터 $1.1{\times}10^{11}/cm^2$를 나타냈다. 가장 높은 공간밀도인 $1.1{\times}10^{11}/cm^2$는 기존에 보고된 값 ($7.7{\times}10^{10}/cm^2$)보다 상대적으로 높은 값을 갖는다 [1,2]. InN 증착양을 93, 186, 및 $372{\AA}/s$으로 각각 변화시켜 형성하여 양자점의 초기 성장거동을 분석하였다. InN 증착양이 증가함에 따라 양자점의 공간밀도는 $4.4{\times}10^{10}/cm^2$$6.4{\times}10^{10}/cm^2$까지 증가하였다. 일반적으로 InP 및 GaAs 기판을 기반으로 한 In(Ga)As 양자점은 증착양이 증가함에 따라 밀도는 감소하고 크기는 증가하는 경향을 보이며, 이는 같은 상 (Phase)을 갖는 물질들끼리 결합하려는 경향이 있기 때문이다. 본 실험에서는 기존 결과와 다른 경향을 보이고 있는데, 이는 Si(111) 기판과 InN 사이의 격자부정합이 상대적으로 크기 때문에 InN 양자구조가 커지는 대신 추가로 새로운 핵생성 메커니즘에 의한 것으로 설명할 수 있다. 이러한 InN 증착양에 따른 InN 양자점 성장거동을 표면에너지를 포함한 이론적인 모델을 통해 논의하고자 한다.

  • PDF