Development of an Open Sandwich Fluoroimmunoassay Based on FRET

FRET에 기반한 Open Sandwich Fluoroimmunoassay

  • (중국중산대학교 미생물학과) ;
  • 이문권 (한양대학교 마이크로바이오칩센터) ;
  • 성기훈 (한양대학교 마이크로바이오칩센터) ;
  • 주재범 (한양대학교 마이크로바이오칩센터) ;
  • 이은규 (한양대학교 마이크로바이오칩센터)
  • Published : 2007.12.31

Abstract

We have developed a sensitive, one-step, homogeneous open sandwich fluoroimmunoassay (OsFIA) based on fluorescence resonance energy transfer (FRET) and luminescent semiconductor quantum dots (QDs). In this FRET assay, estrogen receptor-$\beta$ (ER-$\beta$) antigen was incubated with QD-labeled anti-ER-$\beta$ monoclonal antibody and AF (Alexa Fluoro)-labeled anti-ER polyclonal antibody for 30 minutes, followed by FRET measurement. The dye separation distance was estimated to be between $80\sim90\;{\AA}$. The present method is rapid, simple and highly sensitive, and did not require the bound/free reagent separation steps and solid-phase carriers. A concentration as low as 0.05 nM (2.65 ng/ml) receptor was detected with linearity ($R^2$ > 0.990). In addition, the assay was performed with commercial antibodies. This assay provides a convenient alternative to conventional, laborious sandwich immunoassays.

QDs을 기반으로 하는 OsFIA는 매우 빠르고 간단히 수행될 수 있다. 또한 이 분석법은 고체상의 담체나 결합/잔류시약의 분리 등과 같은 여러 과정을 필요로 하지 않으며, 적은 양의 시약으로도 분석이 가능하다. 본 분석법은 높은 감도로 항원을 측정할 수 있으며, 일상적인 분석에도 쉽게 도입될 수 있을 것이다. 선형 범위 내에서 측정 가능한 receptor의 최소농도는 0.05 nM (2.65 ng/mL) 정도이다. 또한, 일반적으로 상용화된 항체를 가치고 수행이 가능하다. 이 OsFIA 분석법은 기존의 실험적 sandwich immunoassay의 효과적인 대안으로 제시된다.

Keywords

References

  1. Selvin, P. R. (2000), The renaissance of fluorescence resonance energy transfer, Nat. struct. Biol. 7, 730-734 https://doi.org/10.1038/78948
  2. Clapp, A. R., I. L. Medintz, J. M. Mauro, B. Fisher, M. G. Bawendi, and H. Mattoussi (2004), Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors, J. Am. Chem. Soc. 126, 301-310 https://doi.org/10.1021/ja037088b
  3. Clegg, R. M. (1995), Fluorescence resonance energy transfer, Curr. Opin. Biotechnol. 6, 103-110 https://doi.org/10.1016/0958-1669(95)80016-6
  4. Clegg, R. M. (2002), FRET tells us about proximities, distances, orientations and dynamic properties, J. Biotechnol. 82, 177-179
  5. Hillisch, A., M. Lorenz, and S. Diekmann (2001), Recent advances in FRET: distance determination in protein - DNA complexes, Curr. Opin. Struct. Biol. 11, 201-207 https://doi.org/10.1016/S0959-440X(00)00190-1
  6. Selvin, P. R. (1995), Fluorescence resonance energy transfer, Methods Enzymol. 246, 300-334 https://doi.org/10.1016/0076-6879(95)46015-2
  7. Lundin, K., K. Blomberg, T. Nordstrom, and C. Lindqvist (2001), Development of a time-resolved fluorescence resonance energy transfer assay (Cell TR-FRET) for protein detection on intact cells, Anal. Biochem. 299, 92-97 https://doi.org/10.1006/abio.2001.5370
  8. Periasamy, A. and R. N. Day (1999), Visualizing Protein Interactions in living cells using digitized GFP imaging and FRET microscopy, Methods Cell Biol. 58, 293-311 https://doi.org/10.1016/S0091-679X(08)61962-7
  9. Ruiz-Velasco, V. and S. R. Ikeda (2001), Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons, J. Physiol. 537, 679-692 https://doi.org/10.1113/jphysiol.2001.013107
  10. Van Thor, J. J. and K. J. Hellingwerf (2002), Fluorescence resonance energy transfer (FRET) applications using green fluorescent protein. Energy transfer to the endogenous chromophores of phycobilisome light-harvesting complexes, Methods Mol. Biol. 183, 101-119
  11. Veda, H., K. Kubota, Y. Wang, K. Tsumoto, W. Mahoney, I. Kumagai, and T. Nagamune (1999), Homogeneous noncompetitive immunoassay based on the energy transfer between fluorolabeled antibody variable domains (Open Sandwich Fluoroimmunoassay), Biotechniques 27, 738-742
  12. Arai, R., H. Nakagawa, K. Tsumoto, W. Mahoney, I. Kumagai, H. Veda, and T. Nagamune (2001), Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer, Anal. Biochem. 289, 77-81 https://doi.org/10.1006/abio.2000.4924
  13. Pulli, T., M. Hoyhtya, H. Soderlund, and K. Takkinen (2005), One-step homogeneous immunoassay for small analytes, Anal. Chem. 77, 2637-2642 https://doi.org/10.1021/ac048379l
  14. Alivisatos, A. P. (1996), Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 933-937 https://doi.org/10.1126/science.271.5251.933
  15. Mattoussi, H., I. L. Medintz, A. R. Clapp, E. R. Goldman, J. K. Jaiswal, S. M. Simon, and J. M. Mauro (2004), Luminescent quantum dot-bioconjugates in immunoassays, FRET, biosensing and imaging applications, JALA 9, 28-32 https://doi.org/10.1016/S1535-5535(03)00083-2
  16. Mattoussi, H., J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi (2000), Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 122, 12142-12150 https://doi.org/10.1021/ja002535y
  17. Bruchez, J. M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998), Semiconductor nanocrystals as fluorescent biological labels, Science 281, 2013-2016 https://doi.org/10.1126/science.281.5385.2013
  18. Chan, W. and S. Nie (1998), Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281, 2016-2018 https://doi.org/10.1126/science.281.5385.2016
  19. Tran, P. T., E. R. Goldman, G. P. Anderson, J. M. Mauro, and H. Mattoussi (2002), Use of luminescent CdSe-ZnS nanocrystal bioconjugates in quantum dot-based nanosensors, Phys. Stat. Sol. B. 229, 427-432. https://doi.org/10.1002/1521-3951(200201)229:1<427::AID-PSSB427>3.0.CO;2-K
  20. Wang, S., N. Mamedova, N. A. Kotov, W. Chen, and J. Studer (2002), Antigen/antibody immunocomplex from CdTe nanopartic1e bioconjugates, Nano Letters 2, 817-822 https://doi.org/10.1021/nl0255193
  21. Goldman, E. R., A. R. Clapp, G. P. Anderson, H. T. Uyeda, J. M. Mauro, I. L. Medintz, and H. Mattoussi (2004), Multiplexed toxin analysis using four colors of quantum dot fluororeagents, Anal Chem. 76, 684-688 https://doi.org/10.1021/ac035083r
  22. Medintz, I. L., J. H. Konnert, A. R. Clapp, I. Stanish, M. E. Twigg, H. Mattoussi, and J. M. Mauro (2004), A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly, Proc. Natl. Acad. Sci. USA 101, 9612-9617
  23. Sapsford, K. E., I. L. Medintz, J. P. Golden, J. R. Deschamps, H. T. Uyeda, and H. Mattoussi (2004), Surface-immobilized self-assembled protein-based quantum dot nanoassemblies, Langmuir 20, 7720-7728 https://doi.org/10.1021/la049263n
  24. Fehr, M., W. B. Frommer, and S. Lalonde (2002), From the Cover: Visualization of maltose uptake in living yeast cells by fluorescent nanosensors, Proc. Natl. Acad. Sci. USA 99, 9846-9851
  25. Wang, G., J. Yuan, K. Matsumoto, and Z. Hu (2001), Homogeneous time-resolved fluoroimmunoassay of bensulfuron-methyl by using terbium fluorescence energy transfer, Talanta 55, 1119-1125 https://doi.org/10.1016/S0039-9140(01)00526-4
  26. Youn, H. J., E. Terpetschnig, H. Szmacinski, and J. R. Lakowicz (1995), Fluorescence energy transfer immunoassay based on a long-lifetime luminescent metal -ligand complex, Anal. Biochem. 232, 24-30 https://doi.org/10.1006/abio.1995.9966
  27. Oswald, B., F. Lehmann, L. Simon, E. Terpetschnig, and O. S. Wolfbeis (2000), Red laser-induced fluorescence energy transfer in an immunosystem, Anal. Biochem. 280, 272-277 https://doi.org/10.1006/abio.2000.4553
  28. Suzuki, C., H. Ueda, K. Tsumoto, W. Mahoney, I. Kumagai, and T. Nagamune (1999), Open sandwich ELISA with$V_H$-/$V_L$-alkaline phosphatase fusion proteins, J. Immunol. Methods 224, 171-184 https://doi.org/10.1016/S0022-1759(99)00020-4