• 제목/요약/키워드: quantum dots

검색결과 441건 처리시간 0.041초

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • 김경남;정소희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

Memory Effect of $In_2O_3$ Quantum Dots and Graphene in $SiO_2$ thin Film

  • Lee, Dong Uk;Sim, Seong Min;So, Joon Sub;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.240.2-240.2
    • /
    • 2013
  • The device scale of flash memory was confronted with quantum mechanical limitation. The next generation memory device will be required a break-through for the device scaling problem. Especially, graphene is one of important materials to overcome scaling and operation problem for the memory device, because ofthe high carrier mobility, the mechanicalflexibility, the one atomic layer thick and versatile chemistry. We demonstrate the hybrid memory consisted with the metal-oxide quantum dots and the mono-layered graphene which was transferred to $SiO_2$ (5 nm)/Si substrate. The 5-nm thick secondary $SiO_2$ layer was deposited on the mono-layered graphene by using ultra-high vacuum sputtering system which base pressure is about $1{\times}10^{-10}$ Torr. The $In_2O_3$ quantum dots were distributed on the secondary $SiO_2$2 layer after chemical reaction between deposited In layer and polyamic acid layer through soft baking at $125^{\circ}C$ for 30 min and curing process at $400^{\circ}C$ for 1 hr by using the furnace in $N_2$ ambient. The memory devices with the $In_2O_3$ quantum dots on graphene monolayer between $SiO_2$ thin films have demonstrated and evaluated for the application of next generation nonvolatile memory device. We will discuss the electrical properties to understating memory effect related with quantum mechanical transport between the $In_2O_3$ quantum dots and the Fermi level of graphene layer.

  • PDF

CdSe 나노입자의 합성과 광학 특징 (Synthesis and Optically Characterization of CdSe Nanocrystal)

  • 김찬영;김성현;정대혁
    • 통합자연과학논문집
    • /
    • 제1권3호
    • /
    • pp.250-253
    • /
    • 2008
  • New issues arise as to surface characterization, quantification and interface formation. Surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. Semiconductor quantum dots (QDs) have been the subject of much interest for both fundamental reseach and technical applications in recent years, due mainly to their strong size dependent properties and excellent chemical processibility. In this dissertation, the synthesis of CdSe quantum dots were synthesized by pyrolysis of high-temperature organometallic reagents. In order to modify the size and quality of quantum dots, we controlled the growth temperature and the relative amount of precursors to be injected into the coordinating solvent. Moreover, an effective surface passivation of monodisperse nanocrystals was achieved by overcoating them with a higher-band-gap material. Synthesized CdSe quantum dots were studied to evaluate the optical, electronic and structural properties using UV-absorption, and photoluminescence measurement.

  • PDF

Investigation on Preparation of Ge Quantum Dots in $SiO_2$ Thin Films

  • Chen, Jing;Wu, Xuemei;Jin, Zongming;Yao, Weiguo
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.197-201
    • /
    • 1998
  • Ge quantum dots in $SiO_2$ thin films were prepared by r.f. magnetron co-sputtering using a Ge, $SiO_2$ composite target. The size of quantum dots was modulated by controlling of substrate temperature during depositing and annealing of samples deposited at certain substrate temperature. A series of work was done on the influence of preparing parameters on the growth of quantum dots, and a discussion on the formation and growth of quantum dots under different preparation parameters is given.

  • PDF

Graphene and Carbon Quantum Dots-based Biosensors for Use with Biomaterials

  • Lee, Cheolho;Hong, Sungyeap
    • Journal of information and communication convergence engineering
    • /
    • 제17권1호
    • /
    • pp.49-59
    • /
    • 2019
  • Biosensors, which are analysis devices used to convert biological reactions into electric signals, are made up of a receptor component and a signal transduction part. Graphene quantum dots (GQDs) and carbon quantum dots (CQDs) are new types of carbon nanoparticles that have drawn a significant amount of attention in nanoparticle research. The unique features exhibited by GQDs and CQDs are their excellent fluorescence, biocompatibility, and low cytotoxicity. As a result of these features, carbon nanomaterials have been extensively studied in bioengineering, including biosensing and bioimaging. It is extremely important to find biomaterials that participate in biological processes. Biomaterials have been studied in the development of fluorescence-based detection methods. This review provides an overview of recent advances and new trends in the area of biosensors based on GQDs and CQDs as biosensor platforms for the detection of biomaterials using fluorescence. The sensing methods are classified based on the types of biomaterials, including nucleic acids, vitamins, amino acids, and glucose.

비카드뮴계 InZnP/ZnSe/ZnS 코어쉘 양자점의 발광 특성 (Luminescence Properties of Cd-Free InZnP/ZnSe/ZnS Core/Shell Quantum Dots)

  • 이영기;이민상;이정미;원대희;김종만
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.454-460
    • /
    • 2021
  • In this work, we synthesized alloy-core InZnP quantum dots, which are more efficient than single-core InP quantum dots, using a solution process method. The effect of synthesis conditions of alloy core on optical properties was investigated. We also investigated the conditions that make up the gradient shell to minimize defects caused by lattice mismatch between the InZnP core and ZnS is 7.7%. The stable synthesis temperature of the InZnP alloy core was 200℃. Quantum dots consisting of three layered ZnSe gradient shell and single layered ZnS exhibited the best optical property. The properties of quantum dots synthesized in 100 ml and in 2,000 ml flasks were almost equal.

Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성 (Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time)

  • 엄누시아;김택수;좌용호;김범성
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.

Orbital Quantum Bit in Si Quantum Dots

  • 안도열;오정현;황성우
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.16-21
    • /
    • 2006
  • In this paper, current status of experimental and theoretical work on quantum bits based on the semiconductor quantum dots in the University of Seoul will be presented. A new proposal utilizing the multi-valley quantum state transitions in a Si quantum dot as a possible candidate for a quantum bit with a long decoherence time will be also given. Qubits are the multi-valley symmetric and anti-symmetric orbitals. Evolution of these orbitals is controlled by an external electric field, which turns on and off the inter-valley interactions. Initialization is achieved by turning on the inter-valley Hamiltonian to let the system settle down to the symmetric orbital state. Estimates of the decoherence time is made for the longitudinal acoustic phonon process.

  • PDF

A Novel Molecular Monitoring of Hyaluronic Acid Degradation using Quantum Dots

  • Kim, Ji-Seok;Hahn, Sei-Kwang;Kim, Sung-Jee
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.251-251
    • /
    • 2006
  • A real time bio-imaging of HA degradation was successfully carried out using HA-quantum dot conjugates. HA-ADH with ADH content of ca. 70 mol% was synthesized and conjugated with quantum dots containing carboxyl terminal ligands which were activated by the addition of HOBt and EDC in DMSO. When the concentration of HA-ADH solution was higher than 4 wt%, HA-ADH hydrogels incorporating quantum dots could be synthesized in 30 minutes. These novel HA-quantum dot conjugates and the precursor solution of HA hydrogels incorporating quantum dots were injected to the nude mouse and investigated to elucidate the biological roles of HA in the body for various future tissue engineering applications.

  • PDF

Dielectric and Optical Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Oh, Jun-Ho;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.280-280
    • /
    • 2010
  • Semiconductor quantum dots are of great interest for both fundamental research and industrial applications due to their unique size dependant properties. The most promising application of colloidal semiconductor nanocrystals (quantum dots or QDs) is probably as emitters in biomedical labeling, LEDs, lasers etc. As compared to II-VI quantum dots, III-V have attracted greater interest owing to their less ionic lattice, larger exciton diameters and reduced toxicity. Among the III-V semiconductor quantum dots, Indium Phosphide (InP) is a popular material due to its bulk band gap of 1.35 (eV) which is responsible for the photoluminescence emission wavelength ranging from blue to near infrared with change in size of QDs. Nevertheless, in recent years, the exact type of collective properties that arise when semiconductor quantum dots (QDs) are assembled into two- or three-dimensional arrays has drawn much interest. The term "uantum dot solids" is used to indicate three-dimensional assemblies of semiconductor QDs. The optoelectronic properties of the quantum dot solids are known to depend on the electronic structure of the individual quantum dot building blocks and on their electronic interactions. This paper reports an efficient and rapid method to produce highly luminescent and monodisperse quantum dots solution and solid through fabrication of InP thin films. By varying the molar concentration of Indium to Ligand, QDs of different size were prepared. The absorption and emission behaviors were also studied. Similar measurements were also performed on InP quantum dot solid by fabricating InP thin films. The optical properties of the thin films are measured at different curing temperatures which show a blue shift with increase in temperature. The dielectric properties of the thin films were also investigated by Capacitance-voltage(C-V) measurements in a metal-insulator-semiconductor (MIS) device.

  • PDF