• Title/Summary/Keyword: quantitative models

Search Result 1,011, Processing Time 0.03 seconds

Regression Models for Determining the Patent Royalty Rates using Infringement Damage Awards and Inter-Partes Review Cases (손해배상액과 무효심판 판례를 이용한 특허 로열티율 산정 회귀모형)

  • Yang, Dong Hong;Kang, Gunseog;Kim, Sung-Chul
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.1
    • /
    • pp.47-63
    • /
    • 2018
  • This study suggested quantitative models to calculate a royalty rate as an important input factor of the relief from royalty method which has the characteristics of income approach method and market approach method that are generally used in the valuation of intangible assets. This study built a royalty rate regression model by referring to the patent infringement damages cases based on royalties, i.e., by using the royalty rates as a dependent variable and the patent indexes of the corresponding patent right as independent variables. Then, a logistic regression model was constructed by referring to inter-partes review cases of patent rights, i.e. by using not-unpatentable results as a dependent variable and the patent indexes of the corresponding patent right as independent variables. A final royalty rate was calculated by matching the royalty rate from the royalty rate regression model with a not-unpatentable probability from the logistic regression model. The suggested royalty rate was compared with the royalty rate obtained by the traditional methods to check its reliability.

CoMFA and CoMSIA Analysis on the Fungicidal Activity against Damping-off (Pythium ultimum) with N-phenylbenzenesulfonamide Analogues (N-phenylbenzenesulfonamide 유도체들에 의한 모잘록병균 (Pythium ultimum)의 살균활성에 관한 CoMFA 및 CoMSIA분석)

  • Jang, Seok-Chan;Kang, Kyu-Young;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • Three-dimensional quantitative structure-activity relationships (3D-QSARs) on the fungicidal activity against damping-off (Pythium ultimum) with N-phenylbenzenesulfonamide and N-phenyl-2-thienylsulfonamide analogues (1-34) were studied quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indeces analysis) methodologies. On the whole, the statistical qualities of CoMSIA models with field fit alignment (FF1-FF5) were slightly higher than that of atom based fit alignment (AF1-AF5) but, the deviations of statistical quality between two alignments in case of CoMFA models were slightly lower. The statistical results of CoMFA and CoMSIA model showed that the optimized CoMSIA model (FF1: $r_{cv.}^2\;(q^2)=0.674$ & $r_{ncv.}^2=0.964$) for damping-off is better predictability and fitness for fungicidal activities than CoMFA model (AF5: $r_{cv.}^2\;(q^2)=0.616$ & $r_{ncv.}^2=0.930$). The fungicidal activities according to the information of the CoMSIA (FF1) model were dependence upon the electrostatic and hydrophobic field of the N-phenylbenzene sulfonamide analogues. Therefore, from the results of graphical analyses on the contour maps with CoMSIA (FF3) model, it is expected that the characters of R4-substituent on the N-phenyl ring as hydrophobic and hydrogen bond acceptor will be contributed to the fungicidal activity against damping-off.

Optimization for Electron Donating Ability and Organoleptic Properties of Ethanol Extracts from Chrysanthemum Petals (전자공여작용과 관능적 특성을 고려한 산국(山菊) 에탄올 추출물의 제조조건 최적화)

  • Park, Nan-Young;Lee, Gee-Dong;Jeong, Yong-Jin;Kim, Hyun-Ku;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.523-528
    • /
    • 1998
  • Response surface methodology (RSM) was used to monitor extraction characteristics of electron donating ability and organoleptic properties for ethanol extracts from Chrysanthemum petals, thereby determining optimum extraction conditions. A central composite design was applied to investigate effects of solvent per sample $(X_1)$, ethanol concentration $(X_2)$ and extraction time $(X_3)\;at\;60^{\circ}C$ on dependent variables such as electron donating ability $(Y_1)$, organoleptic color $(Y_2)$ and organoleptic aroma $(Y_3)$ of the extracts. Second-order models were employed to generate 4-dimensional response surfaces for qualitative and quantitative aspects of ethanol extracts. Coefficients of determination $(R_2)$ of the models for dependent variables were ranged from 0.8180 to 0.9696. Optimum extraction conditions for each variable were 50 mL/g, 61% and 16 hrs in electron donating ability, 88 mL/g, 21% and 16 hrs in organoleptic color, 55 mL/g, 73% and 19 hrs in organoleptic aroma, respectively. The optimum condition ranges for maximized characteristics of ethanol extracts were $65{\sim}78\;mL/g,\;90{\sim}100%\;and\;15{\sim}25\;hrs$. Predicted values at the optimum conditions were in good agreement with experimental values.

  • PDF

Analysis of Trends of Model and Modeling-Related Research in Science Education in Korea (과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석)

  • Cho, Hye Sook;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.4
    • /
    • pp.539-552
    • /
    • 2017
  • The purpose of this study is to investigate the trends of model and modeling-related research in science education from 1989 to 2016 in Korea. Eighty-five (85) models and modeling-related journal articles were extracted from the KCI-listed journals and analyzed according to the criteria such as participants, research fields, research design, methods, data collection and elements of metamodeling knowledge. According to research participants, three out of four (3/4) were studied for students and the rest were for teachers. More than half of the studies for students were conducted with middle and high school students. The research fields of models and modeling-related researches in science education were comprised of earth science, chemistry, biology science, physics and science course. With regards to research design, the highest type is qualitative research and followed by hybrid research and quantitative research. According to research methods, the most numerous researches that were analyzed was the effectiveness of program, which was a developed model and modeling-related research. The analysis from the elements of the metamodeling knowledge showed most of model and modeling-related research utilized for the change of scientific concept or understanding.

Development of Predictive Growth Model of Listeria monocytogenes Using Mathematical Quantitative Assessment Model (수학적 정량평가모델을 이용한 Listeria monocytogenes의 성장 예측모델의 개발)

  • Moon, Sung-Yang;Woo, Gun-Jo;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.194-198
    • /
    • 2005
  • Growth curves of Listeria monocytogenes in modified surimi-based imitation crab (MIC) broth were obtained by measuring cell concentration in MIC broth at different culture conditions [initial cell numbers, $1.0{\times}10^{2},\;1.0{\times}10^{3}\;and\;1.0{\times}10^{4}$, colony forming unit (CFU)/mL; temperature, 15, 20, 25, 37, and $40^{\circ}C$] and applied to Gompertz model to determine microbial growth indicators, maximum specific growth rate constant (k), lag time (LT), and generation time (GT). Maximum specific growth rate of L. monocytogenes increased rapidly with increasing temperature and reached maximum at $37^{\circ}C$, whereas LT and GT decreased with increasing temperature and reached minimum at $37^{\circ}C$. Initial cell number had no effect on k, LT, and GT (p > 0.05). Polynomial and square root models were developed to express combined effects of temperature and initial cell number using Gauss-Newton Algorism. Relative coefficients of experimental k and predicted k of polynomial and square root models were 0.92 and 0.95, respectively, based on response surface model. Results indicate L. monocytogenes growth was mainly affected by temperature and square root model was more effective than polynomial model for growth prediction.

Study on the Selection and Application of a Spatial Analysis Model Appropriate for Selecting the Radon Priority Management Target Area (라돈 우선관리 대상 지역 선정에 적합한 공간분석모형의 선정 및 활용에 관한 연구)

  • Nam Goung, Sun Ju;Choi, Kil Yong;Hong, Hyung Jin;Yoon, Dan Ki;Kim, Yoon Shin;Park, Si Hyun;Kim, Yoon Kwan;Lee, Cheol Min
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • Objective: The aims of this study were to provide the basic data for establishing a precautionary management policy and to develop a methodology for selecting a radon management priority target area suitable for the Korean domestic environment. Methods: A suitable mapping method for the domestic environment was derived by conducting a quantitative comparison of predicted values and measured values that were calculated through implementation of two models such as IDW and RBF methods. And a qualitative comparison including the clarity of information transmission of the written radon map was carried out. Results: The predicted and measured values were obtained through the implementation of the spatial analysis models. The IDW method showed the lowest in the calculated mean square error and had a higher correlation coefficient than the other methods. As results of comparing the uncertainty using the jackknife concept and the concept of error distance for comparison of the differences according to the model interpolation method, the sum of the error distances showed a modest increase compared with the RBF method. As a result of qualitatively comparing the information transfer clarity between the radon maps prepared with the predicted values through the model implementation, it was found that the maps plotted using the predicted values by the implementation of the IDW method had greater clarity in terms of highness and lowness of radon concentration per area compared with the maps plotted by other methods. Conclusions: The radon management priority area suggests selecting a metropolitan city including an area with a high radon concentration.

Regulation of Histone Acetylation and Methylation of the p11 Gene in the Hippocampus of Chronic Unpredictable Stress-induced Depressive Mice (장기간 예측 불가능한 스트레스를 받은 마우스 해마에서 p11 유전자의 히스톤 아세틸화 및 메틸화의 조절)

  • Seo, Mi Kyoung;Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.995-1003
    • /
    • 2021
  • Chromatin remodeling regulates gene expression through epigenetic mechanisms. Aberrations in histone modification have been associated with depression-like behaviors in animal models. Additionally, growing evidence also indicates that epigenetic modification is associated with depression. p11 (S100A10) has been implicated in the pathophysiology of depression both in human and rodent models. In the present study, we investigated alterations in histone acetylation and methylation at the promoter of the p11 gene in the hippocampus of mice subjected to chronic unpredictable stress (CUS). C57BL/6 mice were exposed to CUS daily for 3 weeks. Depression-like behaviors were measured with the forced swimming test (FST). The levels of hippocampal p11 expression were analyzed by quantitative real-time polymerase chain reaction (PCR) and Western blotting. The levels of acetylated and methylated histone H3 at the promoter of p11 were measured by chromatin immunoprecipitation followed by real-time PCR. CUS-exposed mice displayed depression-like behaviors with prolonged immobility in FST. CUS led to significant decreases in the expression of p11 at both protein and mRNA levels. Meanwhile, there was a decrease in histone H3 acetylation (Ac-H3) and H3-K4 trimethylation (H3K4met3) and an increase in H3-K27 trimethylation (H3K27met3) at the p11 promoter. These results indicate that chronic stress causes the epigenetic suppression of p11 expression in the hippocampus.

Smart Factory Policy Measures for Promoting Manufacturing Innovation (제조혁신 촉진을 위한 스마트공장 정책방안)

  • Park, Jaesung James;Kang, Jae Won
    • Korean small business review
    • /
    • v.42 no.2
    • /
    • pp.117-137
    • /
    • 2020
  • We examine the current status of smart factory deployment and diffusion programs in Korea, and seek to promote manufacturing innovation from the perspective of SMEs. The main conclusions of this paper are as follows. First, without additional market creation and supply chain improvement, smart factories are unlikely to raise profitability leading to overinvestment. Second, new business models need to connect "manufacturing process efficiency" with "R&D" and "marketing" in value chain in smart factories. Third, when introducing smart factories, we need to focus on the areas where process-embedded technology is directly linked to corporate competitiveness. Based on the modularity-maturity matrix (Pisano and Shih, 2012) and the examples of U.S. Manufacturing Innovation Institute (MII), we establish the new smart factory deployment policy measures as follows. First, we shift our smart factory strategy from quantitative expansion to qualitative upgrading. Second, we promote by each sector the formation of industrial commons that help SMEs to jointly develop R&D, exchange standardized data and practices, and facilitate supplier-led procurement system. Third, to implement new technology and business models, we encourage partnerships, collaborations, and M&As between conventional SMEs and start-ups and business ventures. Fourth, the whole deployment process of smart factories is indexed in detail to identify the problems and provide appropriate solutions.

Usability Comparison of Educational Webtoon between Touch Display and VR Device Using AttrakDiff (AttrakDiff를 활용한 터치디스플레이와 VR장비의 교육용 웹툰 사용성 비교)

  • Kim, Young-Jin;Yoo, Hoon-Sik
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.103-114
    • /
    • 2022
  • Global virtual reality (VR) and augmented reality (AR) markets are growing as VR and AR become a new source of revenue for industries around the world. In the edutech sector, an industry that combines traditional education, research on new innovative educational models and business models are scarce, and improvements are needed in the technology group and business environment to realize edutech in detail. Therefore, this study aims to define the elements strategically required for VR Toon development by comparing and analyzing the characteristics of existing touch panel-based display Toon and VR Toon content experiences. Tablet PC Toon and VR Toon were selected to conduct the research. Thirty people (19 men and 11 women) from their teens through their forties were surveyed using questionnaires. The questionnaires were formulated through a quantitative method by using AttrakDiff with a 7-point scale (-3: negative words to 3: positive words). Qualitative evaluations were also performed addressing nine concepts (satisfaction, novelty, operability, creativity, understanding, education, interest, participation, expressiveness). As a result, the usability test results of educational content using tablet personal computers and VR equipment were analyzed from the viewpoint of user experience to define elements expected to be strategically required for VR Toon development.

Applicability of QSAR Models for Acute Aquatic Toxicity under the Act on Registration, Evaluation, etc. of Chemicals in the Republic of Korea (화평법에 따른 급성 수생독성 예측을 위한 QSAR 모델의 활용 가능성 연구)

  • Kang, Dongjin;Jang, Seok-Won;Lee, Si-Won;Lee, Jae-Hyun;Lee, Sang Hee;Kim, Pilje;Chung, Hyen-Mi;Seong, Chang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • Background: A quantitative structure-activity relationship (QSAR) model was adopted in the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH, EU) regulations as well as the Act on Registration, Evaluation, etc. of Chemicals (AREC, Republic of Korea). It has been previously used in the registration of chemicals. Objectives: In this study, we investigated the correlation between the predicted data provided by three prediction programs using a QSAR model and actual experimental results (acute fish, daphnia magna toxicity). Through this approach, we aimed to effectively conjecture on the performance and determine the most applicable programs when designating toxic substances through the AREC. Methods: Chemicals that had been registered and evaluated in the Toxic Chemicals Control Act (TCCA, Republic of Korea) were selected for this study. Two prediction programs developed and operated by the U.S. EPA - the Ecological Structure-Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (T.E.S.T.) models - were utilized along with the TOPKAT (Toxicity Prediction by Komputer Assisted Technology) commercial program. The applicability of these three programs was evaluated according to three parameters: accuracy, sensitivity, and specificity. Results: The prediction analysis on fish and daphnia magna in the three programs showed that the TOPKAT program had better sensitivity than the others. Conclusions: Although the predictive performance of the TOPKAT program when using a single predictive program was found to perform well in toxic substance designation, using a single program involves many restrictions. It is necessary to validate the reliability of predictions by utilizing multiple methods when applying the prediction program to the regulation of chemicals.