• Title/Summary/Keyword: quantile function

Search Result 75, Processing Time 0.03 seconds

Support Vector Quantile Regression Using Asymmetric e-Insensitive Loss Function

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha;Cho, Dae-Hyeon
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.165-170
    • /
    • 2011
  • Support vector quantile regression(SVQR) is capable of providing a good description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse SVQR to overcome a limitation of SVQR, nonsparsity. The asymmetric e-insensitive loss function is used to efficiently provide sparsity. The experimental results are presented to illustrate the performance of the proposed method by comparing it with nonsparse SVQR.

Multivariate confidence region using quantile vectors

  • Hong, Chong Sun;Kim, Hong Il
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.641-649
    • /
    • 2017
  • Multivariate confidence regions were defined using a chi-square distribution function under a normal assumption and were represented with ellipse and ellipsoid types of bivariate and trivariate normal distribution functions. In this work, an alternative confidence region using the multivariate quantile vectors is proposed to define the normal distribution as well as any other distributions. These lower and upper bounds could be obtained using quantile vectors, and then the appropriate region between two bounds is referred to as the quantile confidence region. It notes that the upper and lower bounds of the bivariate and trivariate quantile confidence regions are represented as a curve and surface shapes, respectively. The quantile confidence region is obtained for various types of distribution functions that are both symmetric and asymmetric distribution functions. Then, its coverage rate is also calculated and compared. Therefore, we conclude that the quantile confidence region will be useful for the analysis of multivariate data, since it is found to have better coverage rates, even for asymmetric distributions.

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.

The Weight Function in BIRQ Estimator for the AR(1) Model with Additive Outliers

  • Jung Byoung Cheol;Han Sang Moon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.129-134
    • /
    • 2004
  • In this study, we investigate the effects of the weight function in the bounded influence regression quantile (BIRQ) estimator for the AR(1) model with additive outliers. In order to down-weight the outliers of X-axis, the Mallows' (1973) weight function has been commonly used in the BIRQ estimator. However, in our Monte Carlo study, the BIRQ estimator using the Tukey's bisquare weight function shows less MSE and bias than that of using the Mallows' weight function or Huber's weight function.

  • PDF

Generalized Support Vector Quantile Regression (일반화 서포트벡터 분위수회귀에 대한 연구)

  • Lee, Dongju;Choi, Sujin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.107-115
    • /
    • 2020
  • Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the ⲉ-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within ⲉ. In most studies, the ⲉ-insensitive loss function is used symmetrically, and it is of interest to determine the value of ⲉ. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of ⲉ and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of ⲉ. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of ⲉ and the slope of the penalty using the parameters p1 and p2, respectively. Moreover, the figures show that the asymmetry of the width of ⲉ and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.

지자기 전달함수의 로버스트 추정

  • Yang, Jun-Mo;O, Seok-Hun;Lee, Deok-Gi;Yun, Yong-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.131-142
    • /
    • 2002
  • Geomagnetic transfer function is generally estimated by choosing transfer to minimize the square sum of differences between observed values. If the error structure sccords to the Gaussian distribution, standard least square(LS) can be the estimation. However, for non-Gaussian error distribution, the LS estimation can be severely biased and distorted. In this paper, the Gaussian error assumption was tested by Q-Q(Quantile-Quantile) plot which provided information of real error structure. Therefore, robust estimation such as regression M-estimate that does not allow a few bad points to dominate the estimate was applied for error structure with non-Gaussian distribution. The results indicate that the performance of robust estimation is similar to the one of LS estimation for Gaussian error distribution, whereas the robust estimation yields more reliable and smooth transfer function estimates than standard LS for non-Gaussian error distribution.

  • PDF

Divide and conquer kernel quantile regression for massive dataset (대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형)

  • Bang, Sungwan;Kim, Jaeoh
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.569-578
    • /
    • 2020
  • By estimating conditional quantile functions of the response, quantile regression (QR) can provide comprehensive information of the relationship between the response and the predictors. In addition, kernel quantile regression (KQR) estimates a nonlinear conditional quantile function in reproducing kernel Hilbert spaces generated by a positive definite kernel function. However, it is infeasible to use the KQR in analysing a massive data due to the limitations of computer primary memory. We propose a divide and conquer based KQR (DC-KQR) method to overcome such a limitation. The proposed DC-KQR divides the entire data into a few subsets, then applies the KQR onto each subsets and derives a final estimator by aggregating all results from subsets. Simulation studies are presented to demonstrate the satisfactory performance of the proposed method.

THE MAXIMAL PRIOR SET IN THE REPRESENTATION OF COHERENT RISK MEASURE

  • Kim, Ju Hong
    • The Pure and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.377-383
    • /
    • 2016
  • The set of priors in the representation of coherent risk measure is expressed in terms of quantile function and increasing concave function. We show that the set of prior, $\mathcal{Q}_c$ in (1.2) is equal to the set of $\mathcal{Q}_m$ in (1.6), as maximal representing set $\mathcal{Q}_{max}$ defined in (1.7).

Approximation of reliability constraints by estimating quantile functions

  • Ching, Jianye;Hsu, Wei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.127-145
    • /
    • 2009
  • A novel approach is proposed to effectively estimate the quantile functions of normalized performance indices of reliability constraints in a reliability-based optimization (RBO) problem. These quantile functions are not only estimated as functions of exceedance probabilities but also as functions of the design variables of the target RBO problem. Once these quantile functions are obtained, all reliability constraints in the target RBO problem can be transformed into non-probabilistic ordinary ones, and the RBO problem can be solved as if it is an ordinary optimization problem. Two numerical examples are investigated to verify the proposed novel approach. The results show that the approach may be capable of finding approximate solutions that are close to the actual solution of the target RBO problem.

Quantile confidence region using highest density

  • Hong, Chong Sun;Yoo, Myung Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.35-46
    • /
    • 2019
  • Multivariate Confidence Region (MCR) cannot be used to obtain the confidence region of the mean vector of multivariate data when the normality assumption is not satisfied; however, the Quantile Confidence Region (QCR) could be used with a Multivariate Quantile Vector in these cases. The coverage rate of the QCR is better than MCR; however, it has a disadvantage because the QCR has a wide shape when the probability density function follows a bimodal form. In this study, we propose a Quantile Confidence Region using the Highest density (QCRHD) method with the Highest Density Region (HDR). The coverage rate of QCRHD was superior to MCR, but is found to be similar to QCR. The QCRHD is constructed as one region similar to QCR when the distance of the mean vector is close. When the distance of the mean vector is far, the QCR has one wide region, but the QCRHD has two smaller regions. Based on these features, it is found that the QCRHD can overcome the disadvantages of the QCR, which may have a wide shape.