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THE MAXIMAL PRIOR SET IN THE REPRESENTATION
OF COHERENT RISK MEASURE

Ju Hong Kim

Abstract. The set of priors in the representation of coherent risk measure is ex-
pressed in terms of quantile function and increasing concave function. We show
that the set of prior, Qc in (1.2) is equal to the set of Qm in (1.6), as maximal
representing set Qmax defined in (1.7).

1. Introduction

Kim [4] showed that the set of priors in the representation of Choquet expecta-
tion [2] is the one of equivalent martingale measures under some conditions, when the
distortion is submodular. That is, if a capacity c is submodular, then the coherent
risk measure is represented as

ρ(X) :=
∫

X dc = max
Q∈Qc

EQ[X] for X ∈ L2(FT ),(1.1)

where Qc is defined as

Qc := {Q ∈M1,f : Q[A] ≤ c(A) ∀A ∈ FT }(1.2)

that is equal to the maximal set Qmax representing ρ. Here M1,f := M1,f (Ω,F) is
the set of all finitely additive normalized set functions Q : F → [0, 1].

By using g-expectation [6] and related topics [1, 8], Kim [4] showed that Qc equals
to Qθ where Qθ and Θg are respectively defined as

Qθ :=
{

Qθ : θ ∈ Θg,
dQθ

dP

∣∣∣
Ft

= exp

(∫ t

0
θsdBs − 1

2

∫ t

0
|θs|2ds

)}
(1.3)

and

Θg = {(θt)t∈[0,T ] : θ is R− valued, progressively measurable &(1.4)

|θt| ≤ νt},
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for a continuous function νt for t ∈ [0, T ].
We consider the Banach spaces Lp(Ω,F , P ) for 1 ≤ p < ∞. Let q ∈ (1,∞] be

such that 1
p + 1

q = 1, and define

Mq
1(P ) :=

{
Q ∈M1(P )

∣∣∣ dQ

dP
∈ Lq

}
.

It is well-known in the literature [3, 5, 7] that the coherent risk measures ρm

defined as

ρm(X) :=
∫

(0,1]
AV @Rλ(X) m(dλ)

for m ∈M ⊂M2
1((0, 1]), can be expressed as Choquet expectation and consequently

ρm(X) = max
Q∈Qm

EQ[−X],(1.5)

where the set Qm is defined as

(1.6)

Qm :=
{

Q ∈M2
1(P )

∣∣∣ϕ :=
dQ

dP
satisfies

∫ 1

t
qϕ(s)ds ≤ ψ(1− t) for t ∈ (0, 1)

}
.

In this paper, we show that Qcψ
= Qmax = Qm as maximal representing set,

Qmax = {Q ∈M2
1(P ) |αmin(Q) = 0}.(1.7)

The minimal penalty function αmin is defined as

αmin(Q) := sup
X∈Aρ

EQ[−X] for Q ∈M2
1(P ),

where Aρ is the acceptance set of ρ on a measurable set X defined as

Aρ := {X ∈ X | ρ(X) ≤ 0}.
This paper consists of as follows. Introduction is given in section 1. Some primary

definitions such as coherent risk measure, quantile function etc. are stated in section
2. The main theorem is given in section 3.

2. Some Primary Definitions

We give some definitions such as coherent risk measure, λ-quantile, Choquet
expectation, etc..

Definition 2.1. For λ ∈ (0, 1), a λ-quantile of a random variable X on (Ω,F , P ) is
defined as any real number q satisfying
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P [X ≤ q] ≥ λ and P [X < q] ≤ λ,

and the set of all λ-quantiles of X is an interval [q−X(λ), q+
X(λ)], where

q−X(λ) = sup{x |P [X < x] < t} = inf{x |P [X ≤ x] ≥ t}
and

q+
X(λ) = inf{x |P [X ≤ x] > t} = sup{x |P [X < x] ≤ t}.

Definition 2.2. Let λ ∈ (0, 1) and X ∈ X . The Value at Risk at level λ is defined
as

V @Rλ(X) := −q+
X = q−−X(1− λ) = inf{σ |P [X + σ < 0] ≤ λ}.

Definition 2.3. The Average Value at Risk at level λ ∈ (0, 1] of a position X ∈ X
is defined as

AV @Rλ(X) :=
1
λ

∫ λ

0
V @Rs(X) ds.

Definition 2.4. A coherent risk measure ρ : L2 → R ∪ {∞} is a mapping satifying
the following properties for X, Y ∈ L2

(1) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subadditivity),
(2) ρ(λX) = λρ(X) for λ ≥ 0 (positive homogeneity),
(3) ρ(X) ≥ ρ(Y ) if X ≤ Y (monotonicity),
(4) ρ(Y + m) = ρ(Y )−m for m ∈ R (translation invariance).

Definition 2.5. A mapping ρ : L2 → R ∪ {∞} is called a monetary measure of
risk if it satisfies the conditions (3) (montonicity) and (4) (translation invariance)
in Definition 2.4.

Definition 2.6. A monetary measure of risk ρ on X = L2(Ω,F , P ) is called law-
invariant if ρ(X) = ρ(Y ) whenever X and Y have the same distribution under
P .

Definition 2.7. A coherent risk measure ρ on X = L2 is called that ρ is continuous
from above if it satisfies

Xn ↘ X =⇒ ρ(Xn) ↗ ρ(X),

and that ρ is continuous from below if it satisfies

Xn ↗ X =⇒ ρ(Xn) ↘ ρ(X).
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Assume that given probability space (Ω,F , P ) is atomless throughout this paper.

Theorem 2.1 ([3]). A coherent risk measure ρ is continuous from above and law-
invariant if and only if

ρ(X) := sup
m∈M

∫

(0,1]
AV @Rλ(X) m(dλ)

for some set M⊂M2
1((0, 1]).

Define the coherent risk measures ρm as

ρm(X) :=
∫

(0,1]
AV @Rλ(X) m(dλ)

for m ∈M ⊂M2
1((0, 1]).

Since AV @Rλ is coherent, continuous from below and law-invariant, so are any
mixture ρm for a probability measure m on (0, 1].

It is shown in Theorem 3.3 that ρm can be identified with the Choquet integral
of the loss −X with respect to the set function cψ(A) := ψ(P [A]), where ψ is the
concave function defined in Lemma 3.2.

Definition 2.8. A set function c : F → [0, 1] is called monotone if

c(A) ≤ c(B) for A ⊂ B

and normalized if

c(∅) = 0 and c(Ω) = 1.

A monotone set function is called submodular if

c(A ∪B) + c(A ∩B) ≤ c(A) + c(B).

Definition 2.9. Let c : F → [0, 1] be any set function which is normalized and
monotone. Then Choquet integral of a bounded measurable function X on (Ω,F)
with respect to c is defined as

∫
X dc :=

∫ 0

−∞
(c(X > x)− 1)dx +

∫ ∞

0
c(X > x)dx.

Definition 2.10. Let ψ : [0, 1] → [0, 1] be an increasing function such that ψ(0) = 0
and ψ(1) = 1. The set function

cψ(A) = ψ(P [A]), A ∈ F ,

is called the distortion of the probability measure P with respect to the distiortion
function ψ.
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3. The Main Theorem

In this section, the main theorem is stated and proven. Proposition 3.1, Lemma 3.2,
Theorem 3.3 and Theorem 3.4 are quoted in the book [3].

Proposition 3.1. Let cψ be the distortion of P with respect to the distiortion func-
tion ψ. If ψ is concave, then cψ is submodular.

Note that a concave function ψ take a right-continuous right-hand derivative ψ′+.

Lemma 3.2. The identity

ψ′+(t) =
∫

(t,1]
s−1 m(ds), 0 < t < 1,

defines a one-to-one correspondence between probability measures m on [0, 1] and in-
creasing concave functions ψ : [0, 1] → [0, 1] with ψ(0) = 0 and ψ(1) = 1. Moreover,
we have ψ(0+) = m({0}).

Theorem 3.3. Let m be a probability measure on [0, 1] and ψ be the concave function
defined in Lemma 3.2. Then for X ∈ X ,

ρm(−X) = ψ(0+)AV @R0(−X) +
∫ 1

0
qX(t)ψ′(1− t) dt

=
∫

[0,1]
X dcψ.

Theorem 3.4. Let ρ be a coherent risk measure and suppose that ρ is continuous
from above. Then ρ is law-invariant if and only if its minimal penalty function
αmin(Q) depends only on the law of ϕQ := dQ

dP under P when Q ∈ Mq
1(P ). In this

case, ρ has the representation

ρ(X) = sup
Q∈Mq

1(P )

(∫ 1

0
q−X(t)qϕQ(t) dt− αmin(Q)

)
,

and the minimal penalty function satisfies

αmin(Q) = sup
X∈Aρ

∫ 1

0
q−X(t)qϕQ(t) dt = 0.(3.1)

Theorem 3.5. Let m be a probability measure on [0, 1]. Let ψ be the corresponding
concave function defined in Lemma 3.2. Then ρm can be represented

ρm(X) = max
Q∈Qm

EQ[−X],
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where the set Qm is defined as

Qm :=
{

Q ∈M2
1(P )

∣∣∣ϕ :=
dQ

dP
satisfies

∫ 1

t
qϕ(s)ds ≤ ψ(1− t) for t ∈ (0, 1)

}
.

Here Qm is the maximal subset of M2
1(P ) that represents ρm.

Proof. The risk measure ρm is clearly coherent and continuous from above. The ρm

can be represented by taking the supremum of expectations over the set Qmax =
{Q ∈ M2

1(P ) |αmin(Q) = 0}. The equation (3.1) and Theorem 3.3 imply that a
measure Q ∈M2

1(P ) with density ϕ = dQ/dP belongs to Qmax if and onlt if
∫ 1

0
qX(s)qϕ(s) ds ≤ ρm(−X)

= ψ(0+)AV @R0(−X) +
∫ 1

0
qX(s)ψ′(1− s) ds(3.2)

for all X ∈ L2. Set X ≡ t which is constant random variable. Then we have qX =
I[t,1] a.e., AV @R0(−X) := V @R0(−X) := ess sup(t) ≤ 1 and the inequalty (3.2)
becomes

∫ 1

t
qϕ(s) ds ≤ ψ(0+) +

∫ 1

t
ψ′(1− s) ds = ψ(1− t)

for all t ∈ (0, 1). Therefore, Qmax ⊂ Qm. Now let’s prove the reverse inclusion
Qm ⊂ Qmax. Let Q ∈ Qm be fixed. We show that the density ϕ = dQ/dP satisfies
the equation (3.2) for any given X ∈ L2. Let ν be the positive finite measure on
[0, 1] such that q+

X(s) = ν([0, s]). Fubini’s theorem and the definition of Qm imply
that

∫ 1

0
qX(s)qϕ(s) ds =

∫

[0,1]

∫ 1

t
qϕ ds ν(dt)

≤
∫

[0,1]
ψ(1− t) ν(dt)

= ψ(0+)ν([0, 1]) +
∫ 1

0
ψ′(1− s)

∫

[0,s]
ν(dt) ds,

which coincides with the right-hand side of (3.2). Note that ν([0, 1]) = q+
X(1) =

sup{x ∈ R |FX(x) ≤ 1} = ess sup X := AV @R0(−X) and
∫
[0,s] ν(dt) = ν([0, s]) =

q+
X(s) = qX(s) a.e.. ¤

The following is the main theorem.
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Theorem 3.6. We have

Qm = Qcψ
= Qmax.

Moreover, we get

ρm(−X) = max
Q∈Qm

EQ[X] =
∫

[0,1]
X dcψ = max

Q∈Qcψ

EQ[X].

Proof. The equation (1.1), Theorem 3.3 and Theorem 3.5 give the proof. ¤
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