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Abstract
Support vector quantile regression(SVQR) is capable of providing a good description of the linear and non-

linear relationships among random variables. In this paper we propose a sparse SVQR to overcome a limitation
of SVQR, nonsparsity. The asymmetric e-insensitive loss function is used to efficiently provide sparsity. The
experimental results are presented to illustrate the performance of the proposed method by comparing it with
nonsparse SVQR.
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1. Introduction

Quantile regression has been a popular method for estimating the quantiles of a conditional distribu-
tion on the values of covariates since Koenker and Bassett (1978) introduced linear quantile regression.
Just as classical linear regression methods based on the minimizing sum of squared residuals enable
us to estimate a wide variety of models for conditional mean functions, quantile regression methods
offer a mechanism for estimating models for the full range of conditional quantile functions, includ-
ing the conditional median function. By supplementing the estimation of conditional mean functions
with techniques for estimating an entire family of conditional quantile functions, quantile regression
is capable of providing a better statistical analysis of the stochastic relationships among random vari-
ables. An introduction and examination of current research areas of quantile regression can be found
in Yu et al. (2003) and Koenker (2005). Support vector machine(SVM) is used as a new technique for
regression and classification problems. The SVM is based on the structural risk minimization(SRM)
principle that is shown to be superior to the traditional empirical risk minimization(ERM) principle.
SRM minimizes an upper bound on the expected risk, unlike ERM, which minimizes the error on the
training data. By minimizing this bound, high generalization performance can be achieved. In partic-
ular, for the SVM regression case, SRM results in regularized ERM with e-insensitive loss function.
Introductions to and overviews of recent developments of SVM can be found in Vapnik (1995, 1998),
Smola and Schölkopf (1998) and Wang (2005)

Sparsity is known as an important feature of kernel regression models. It provides efficiency in
predicting the regression function, which implies that the predicted regression function of the test data
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can be obtained with the small number of data in the training data set. SVM provides sparsity in which
the number of support vectors depends on the number of training data and the size of insensitivity. A
small number of support vectors implies sparsity of the model. Tipping (2001) proposed a Bayesian
approach referred to as the relevance vector machine(RVM), providing more sparsity. However, RVM
has computational problems since there are no closed-form solutions for maximizing the marginal
likelihood. SVQR can be obtained by applying SVR with a check function instead of an e-insensitive
loss function into the quantile regression (Takeuchi et al., 2006). However, SVQR does not provide
sparsity due to zero insensitiveness of the check function. Here we define the support vectors as the
index numbers corresponding to nonzero Lagrange multiplier differences. By using an asymmetric
e-insensitive loss function we can take the support vectors efficiently depending on the value of quan-
tiles. In this paper we use an asymmetric e-insensitive loss function in SVQR to provide the sparsity.
The proposed loss function is designed to provide more sparsity by adjusting insensitiveness accord-
ing the sign of residuals. In Section 2 we propose a sparse SVQR using an asymmetric e-insensitive
loss function and perform numerical studies through examples. In Section 3 we give the conclusions.

2. Support Vector Quantile Regression

2.1. SVQR

Let the training data set D be denoted by (xi, yi), i = 1, . . . , n with each input vector x ∈ Rd and
the output yi ∈ R, which is linearly or nonlinearly related to the input vector xi. Here the feature
mapping function ϕ(·) : Rd → Rd f maps the input space to the higher dimensional feature space where
the dimension d f is defined in an implicit way. An inner product in feature space has an equivalent
kernel in input space, ϕ(xi)′ϕ(x j) = K(xi, x j) (Mercer, 1909). Several choices of the kernel K(·, ·)
are possible. We consider the nonlinear case, in which the θth quantile function, given x, qθ(x) for
θ ∈ (0, 1), can be regarded as a nonlinear function of input vector x.

With a check function hθ(·), the θth quantile function can be defined as a function of any solution
to the optimization problem,

min
1
2

w′w +C
n∑

i=1

hθ(yi − qθ(xi)), (2.1)

where hθ(r) = θrI(r > 0)+ (θ− 1)rI(x ≤ 0) for θ ∈ (0, 1) , where I(·) is the indicated function. We can
express the quantile regression problem by formulation for SVM as follows.

min
1
2

w′w +C
n∑

i=1

(θξi + (1 − θ)ξ∗i ) (2.2)

subject to

yi − w′ϕ(xi) − b ≤ ξi, w′ϕ(xi) + b − yi ≤ ξ∗i , ξi ≥ 0, ξ∗i ≥ 0,

where C is a regularization parameter penalizing the training errors. We construct a Lagrange function
as follows:

L =
1
2

w′w +C
n∑

i=1

(θξi + (1 − θ)ξ∗i ) −
n∑

i=1

αi(ξi − (yi − w′ϕ(xi) − b))

−
n∑

i=1

α∗i (ξ∗i − (w′ϕ(xi) + b − yi)) −
n∑

i=1

ηiξi −
n∑

i=1

η∗i ξ
∗
i . (2.3)
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We notice that the non-negative constraints αi, ηi, α
∗
i , η
∗
i ≥ 0 should be satisfied. After taking partial

derivatives of Equation (2.3) with regard to the primal variables (w, ξi, b) and plugging them into
Equation (2.3), we have the optimization problem below.

max L = − 1
2

n∑
i, j=1

(αi − α∗i )(α j − α∗j)K(xi, x j) +
n∑

i=1

(αi − α∗i )yi (2.4)

subject to
∑n

i=1 αi −
∑n

i=1 α
∗
i = 0, 0 ≤ αi ≤ θC and 0 ≤ α∗i ≤ (1 − θ)C, i = 1, . . . , n.

Solving the above problem with the constraints determines the optimal Lagrange multipliers α̂i

and α̂∗i . Thus, the estimated θth quantile function given the input vector x0 is obtained as

q̂θ(x0) =
n∑

i=1

(α̂i − α̂∗i )K(xi, x0) + b̂, (2.5)

where b̂ is obtained via Kuhn-Tucker conditions (Kuhn and Tucker, 1951) such as,

b̂ =
1
ns

∑
i∈Is

(yi − Ki(α̂ − α̂∗)),

where α̂ = (α̂1, . . . , α̂n)′, α̂∗ = (α̂∗1, . . . , α̂
∗
n)′ and ns is the size of the set Is = {i = 1, . . . , n|C(θ − 1) <

α̂i − α̂∗i < Cθ} and Ki is the ith row of the kernel matrix K = {K(xi, x j)}n×n. In the nonlinear case, w
is no longer explicitly given. However, it is uniquely defined in the weak sense by the dot products.
Here the linear regression model can be regarded as a special case of the nonlinear regression model
by using the identity feature mapping function, that is, ϕ(x) = x which implies the linear kernel such
that K(x1, x2) = x′1x2.

2.2. Sparse SVQR

With an asymmetric e-insensitive loss function gθ,e(·), shown in Figure 1, the θth quantile function can
be defined as a function of any solution to the optimization problem,

min
1
2

w′w +C
n∑

i=1

gθ,e(yi − qθ(xi)), (2.6)

where gθ,e(r) = 0 if θ/(θ − 1) e ≤ r ≤ (1 − θ)/θ e, gθ,e(r) = θr − (1 − θ)e if r > (1 − θ)/θ e and
gθ,e(r) = (θ−1)r− θe if r < θ/(θ − 1)e for θ ∈ (0, 1). The check function used in nonsparse SVQR and
the asymmetric e-insensitive loss function are illustrated in Figure 1 with θ = 0.35, 0.75 and e = 0.2.

We can express the quantile regression problem by the formulation for SVM as follows.

min
1
2

w′w +C
n∑

i=1

(
θξi + (1 − θ)ξ∗i

)
(2.7)

subject to

yi − w′ϕ(xi) − b ≤ ξi +
1 − θ
θ

e,

w′ϕ(xi) + b − yi ≤ ξ∗i +
θ

1 − θ e,

ξi ≥ 0, ξ∗i ≥ 0,
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Figure 1: The check function(solid line) and the asymmetric 0.2-insensitive loss function(dotted line) with θ =

0.35(Left) and θ = 0.75(Right).

where e > 0 and C is a regularization parameter penalizing the training errors. We construct a La-
grange function as follows:

L =
1
2

w′w +C
n∑

i=1

(θξi + (1 − θ)ξ∗i ) −
n∑

i=1

αi

(
ξi +

1 − θ
θ

e − (yi − w′ϕ(xi) − b)
)

(2.8)

−
n∑

i=1

α∗i

(
ξ∗i +

θ

1 − θ e − (w′ϕ(xi) + b − yi)
)
−

n∑
i=1

ηiξi −
n∑

i=1

η∗i ξ
∗
i .

We notice that the non-negative constraints αi, α
∗
i , ηi, η

∗
i ≥ 0 should be satisfied. After taking partial

derivatives of Equation (2.8) with regard to the primal variables (w, ξi, b) and plugging them into
Equation (2.8), we have the optimization problem below.

min L =
1
2

n∑
i, j=1

(αi − α∗i )(α j − α∗j)K(xi, x j) +
n∑

i=1

αi

(
1 − θ
θ

e − yi

)
+

n∑
i=1

α∗i

(
θ

1 − θe + yi

)
(2.9)

subject to
∑n

i=1 αi −
∑n

i=1 α
∗
i = 0, 0 ≤ αi ≤ θC and 0 ≤ α∗i ≤ (1 − θ)C, i = 1, . . . , n.

Solving the above problem with the constraints determines the optimal Lagrange multipliers α̂i

and α̂∗i . Here the input vector xi, corresponding to positive α̂i or α̂∗i , is called the support vector. Thus,
the estimated θth quantile function, given the input vector x0, is obtained as

q̂θ(x0) =
n∑

i=1

(α̂i − α̂∗i )K(xi, x0) + b̂, (2.10)

where b̂ is obtained via Kuhn-Tucker conditions (Kuhn and Tucker, 1951) such as,

b̂ =
1

n1 + n2

∑
i∈I1

(
yi − Ki(α̂ − α̂∗) −

1 − θ
θ

e
)
+

∑
i∈I2

(
yi − Ki(α̂ − α̂∗) +

θ

1 − θ e
) ,

where n1 is the size of the set I1 = {i = 1, . . . , n | 0 < α̂i < Cθ} and n2 is the size of the set I2 = {i =
1, . . . , n | 0 < α̂∗i < C(1 − θ)}, i = 1, . . . , n.
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Table 1: The average of 100 MSEs of q̂θ(x) for θ = 0.1, 0.5, 0.9 (standard error of MSEs in parenthesis) and the
number of support vectors in spars SVQR

θ Sparse SVQR No. of SVs Nonsparse SVQR
0.1 0.0248(0.002644) 53 0.0422(0.003429)
0.5 0.0087(0.000874) 82 0.0144(0.001454)
0.9 0.0019(0.0003387) 50 0.0071(0.0009113)

We can see that {i = 1, . . . , n | 0 < α̂∗i ≤ (1 − θ)C} = {i = 1, . . . , n | yi ≥ q̂θ(xi) + (1 − θ)/θ e} and
{i = 1, . . . , n | 0 < α̂i ≤ θC} = {i = 1, . . . , n | yi ≤ q̂θ(xi) − θ/(1 − θ)e}, which are indices of data points
with support vectors that are not in the asymmetric e-tube.

2.3. Numerical studies

We illustrate the performance of the sparse quantile regression estimation through the simulated data
for nonlinear regression cases. A total of 101 data sets (1 training data set and 100 test data sets) are
generated to present the prediction performance of the proposed method. Each data set consists of 100
x’s and 100 y’s. Here x’s are generated from a uniform distribution U(0, π); y’s are generated from a
normal distribution N(1 + sin(x), 0.1). The true θth quantile function is given as

qθ(x) = 1 + sin(x) + 0.1Φ−1(θ) for θ ∈ (0, 1),

whereΦ(·) is the cdf of N(0, 1) distribution. The radial basis kernel function is utilized in this example,
which is

K(x1, x2) = e−
(x1−x2)2

σ2 .

For the training data set the hyperparameters (e,C, σ2) were chosen as (0.05, 100, 1) by 5-fold cross-
validation. Figure 2 shows the estimated θth quantile regression functions imposed on the scatter
plots of a test data set for θ = 0.1 (Left), θ = 0.9 (Middle) and θ = 0.5 (Right). From Figure 2
we can see that the proposed method provides the sparsity. In Figure 2 the e-tube is obtained as
(q̂0.1(x) − θ/(1 − θ)e, q̂0.1(x) + (1 − θ)/θ e). For θ = 0.1 the e-tube is (q̂0.1(x) − 0.0055, q̂0.1(x) + 0.45),
this makes the upper bound distinguishable in Figure 2 (Left) but the lower bound indistinguishable in
Figure 2 (Left). For θ = 0.9 the e-tube is (q̂0.9(x)− 0.45, q̂0.9(x)+ 0.0055), this makes the lower bound
distinguishable in Figure 2 (Middle) but the upper bound indistinguishable in Figure 2 (Middle). From
100 test data sets we obtain a mean squared error of q̂θ(x) to compare the performance of sparse SVQR
to SVQR, with the results shown in Table 1. From the table we can see that the proposed sparse SVQR
provides smaller MSE and error of MSE.

3. Conclusion

In this paper, we dealt with estimating the quantile regression function by SVQR using an asymmetric
e-insensitive loss function. Through example we showed that the proposed method provides sparsity
and better performance than that of SVQR. The model selection of SVQR using an asymmetric e-
insensitive loss function takes ne times of the model selection of SVQR in computing time, where ne

is the number of candidates of e. We must consider this fact in application of both methods to a large
data set. The model selection method, such as the generalized approximate cross-validation function,
will be studied in further research using the effective dimensionality of the fitted model.
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Figure 2: Estimated θth quantile regression functions (q̂θ(x)) imposed on the scatter plots of 100 data points of
a data set(dots = data points with nonsupport vector, stars = data points with support vectors, solid line = q̂θ(x),

dotted line(upper) = q̂θ(x) + (1 − θ)/θ e and dotted line(lower) = q̂θ(x) − θ/(1 − θ)e)
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