• 제목/요약/키워드: quantification

검색결과 2,957건 처리시간 0.03초

Detection and Quantification of Fusarium oxysporum f. sp. niveum Race 1 in Plants and Soil by Real-time PCR

  • Zhong, Xin;Yang, Yang;Zhao, Jing;Gong, Binbin;Li, Jingrui;Wu, Xiaolei;Gao, Hongbo;Lu, Guiyun
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.229-238
    • /
    • 2022
  • Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/µl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.

LC-MS/MS와 GC-MS를 이용한 세신 추출물 중 7종 성분의 함량분석 (Quantitative Analysis of the Seven Marker Components in Asarum sieboldii using the LC-MS/MS and GC-MS)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제44권4호
    • /
    • pp.350-361
    • /
    • 2013
  • Asarum sieboldii has been used for treatment of fever, pain, common cold, and chronic sinusitis in Korea. In this study, we performed quantification analysis of seven major constituents including aristolochic acid I, aristolochic acid II, ${\alpha}$-asarone, ${\beta}$-asarone, elemicin, methyl eugenol, and safrole in the 70% ethanol extract of Asarum sieboldii and its solvent fractions, n-hexane, ethylacetate, n-butanol, and water ones using a ultra-performance liquid chromatography-electrospray ionization-mass spectrometer(UPLC-ESI-MS) and gas chromatography-mass spectrometer(GC-MS). Regression equations of seven components were acquired with $r^2$ values >0.99. The values of limit of detection(LOD) and quantification(LOQ) were 0.1-3.9 ng/mL and 0.3-11.7 mg/mL, respectively. The amount of the seven compounds in Asarum sieboldii were not detected -143.66 mg/g. The established LC-MS/MS and GC-MS methods will be helpful to improve quality control of Asarum sieboldii.

산림생태계 수자원 공급서비스 계량화 모형의 국내적용성 분석 (Applicability Analysis of Water Provisioning Services Quantification Models of Forest Ecosystem)

  • 최현아;이우균;송철호;이종열;전성우;김준순
    • 한국환경복원기술학회지
    • /
    • 제17권4호
    • /
    • pp.1-15
    • /
    • 2014
  • Forest ecosystems generate variety of important goods and services for human well-being. As a growing concern of climate change and water shortage, it is necessary to quantify, model and map water balance in forest. In this study, we have analyzed 11 overseas forest water supply models (AIM, ATEAM, CENTURY, (E)SWAT, GUMBO, InVEST, PLM, SAVANNA, WaSSI, WaterGAP, WBM) and compared their scale, input and out data, availability of the models and analyzed the applicability of the models to Korea. As a result, InVEST and WaterGAP model appeared to be applicable for quantifying water provisioning services in Korea. A systematic approach for applying to evaluate water balance in forest was suggested based on our quantification approach.

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

퍼지모델을 이용한 인적오류확률의 타당성 검증 (A Validity Verification of Human Error Probability using a Fuzzy Model)

  • 장통일;이용희;임현교
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.137-142
    • /
    • 2006
  • Quantification of error possibility, in an HRA process, should be performed so that the result of the qualitative analysis can be utilized in other areas in conjunction with overall safety estimation results. And also, the quantification is an essential process to analyze the error possibility in detail and to obtain countermeasures for the errors through screening procedures. In previous studies for the quantification of error possibility, nominal values were assigned by the experts' judgements and utilized as corresponding probabilities. The values assigned by experts' experiences and judgements, however, require verifications on their reliability. In this study, the validity of new error possibility values in new MCR design was verified by using the Onisawa's model which utilizes fuzzy linguistic values to estimate human error probabilities. With the model of error probabilities are represented as analyst's estimations and natural language expression instead of numerical values. As results, the experts' estimation values about error probabilities are well agreed to the existing error probability estimation model. Thus, it was concluded that the occurrence probabilities of errors derived from the human error analysis process can be assessed by nominal values suggested in the previous studies. It is also expected that our analysis method can supplement the conventional HRA method because the nominal values are based on the consideration of various influencing factors such as PSFs.

Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology

  • Adav, Sunil S.;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Fungal biotechnology has been well established in food and healthcare sector, and now being explored for lignocellulosic biorefinery due to their great potential to produce a wide array of extracellular enzymes for nutrient recycling. Due to global warming, environmental pollution, green house gases emission and depleting fossil fuel, fungal enzymes for lignocellulosic biomass refinery become a major focus for utilizing renewal bioresources. Proteomic technologies tender better biological understanding and exposition of cellular mechanism of cell or microbes under particular physiological condition and are very useful in characterizing fungal secretome. Hence, in addition to traditional colorimetric enzyme assay, mass-spectrometry-based quantification methods for profiling lignocellulolytic enzymes have gained increasing popularity over the past five years. Majority of these methods include two dimensional gel electrophoresis coupled to mass spectrometry, differential stable isotope labeling and label free quantitation. Therefore, in this review, we reviewed more commonly used different proteomic techniques for profiling fungal secretome with a major focus on two dimensional gel electrophoresis, liquid chromatography-based quantitative mass spectrometry for global protein identification and quantification. We also discussed weaknesses and strengths of these methodologies for comprehensive identification and quantification of extracellular proteome.

인테리어 내장재의 고급감에 관한 시각 및 촉각변수의 수량화 모형 개발 (Development of Quantification Models on Visual and Tactile Design Characteristics for the Luxuriousness of Interior Covering Materials)

  • 반상우;윤명환
    • 대한산업공학회지
    • /
    • 제33권4호
    • /
    • pp.393-401
    • /
    • 2007
  • Affective aspects of design attributes such as color, Pattern, and texture are important to the overall impression and the success of interior products. Among all the interior materials, wallpapers and flooring materials take up largest construction area and they are main components in creating affective impression for customers. This study aims to investigate the relationship between luxuriousness and related affective variables and design elements of wallpapers and flooring materials. The approach consists of 3 steps: (1) selecting related affective features and product design attributes through a literature survey, opinion of expert panel, and focus group interview, (2) conducting evaluation experiments, and (3) developing Kansei models using multivariate statistical analysis and analyzing critical attributes. Evaluation experiment was conducted using a questionnaire made up of 7-point scale and 100-point scale and 30 housewives and 20 interior designers participated in the evaluation experiment. The result of evaluation was analyzed through principal component regression and quantification I analysis. As a result of analyzing the survey data, the relationship between luxuriousness and related affective features and product design attributes was identified, moreover a optimal combination of the design component was identified. Consequently, it is expected that the results of the study would be a basis of the concept of emotion-based design by giving insights about how customers perceive the luxuriousness and suggesting the optimal combination, and providing specific quantitative design guidelines.

호흡곤란 환자에 대한 혈액검사 결과들의 수량화 연구 (A quantification study of blood test results for dyspnea patients)

  • 박철용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.477-485
    • /
    • 2011
  • Park 등 (2010)은 호흡곤란을 주호소로 내원한 668명의 환자를 대상으로 11개 혈액검사 결과 중 퇴원구간에 속한 결과의 개수를 가지고 입퇴원 결정을 위한 간편한 통계모형을 제안하였다. 그런데 11개 혈액검사의 결과에 대한 중요성을 고려하지 않아 모형의 성능이 떨어질 수 있다는 문제점이 있었다. 이 연구에서는 수량화 방법에 의해 11개 혈액검사 결과의 중요성을 평가해보고, 이 중요성을 고려한 통계모형을 도출하였다. 그 결과 중요성을 고려한 새로운 모형이 중요성을 고려하지 않은 기존 모형보다 다소 성능이 향상된 것을 발견할 수 있었다.

Application of Dynamic Probabilistic Safety Assessment Approach for Accident Sequence Precursor Analysis: Case Study for Steam Generator Tube Rupture

  • Lee, Hansul;Kim, Taewan;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.306-312
    • /
    • 2017
  • The purpose of this research is to introduce the technical standard of accident sequence precursor (ASP) analysis, and to propose a case study using the dynamic-probabilistic safety assessment (D-PSA) approach. The D-PSA approach can aid in the determination of high-risk/low-frequency accident scenarios from all potential scenarios. It can also be used to investigate the dynamic interaction between the physical state and the actions of the operator in an accident situation for risk quantification. This approach lends significant potential for safety analysis. Furthermore, the D-PSA approach provides a more realistic risk assessment by minimizing assumptions used in the conventional PSA model so-called the static-PSA model, which are relatively static in comparison. We performed risk quantification of a steam generator tube rupture (SGTR) accident using the dynamic event tree (DET) methodology, which is the most widely used methodology in D-PSA. The risk quantification results of D-PSA and S-PSA are compared and evaluated. Suggestions and recommendations for using D-PSA are described in order to provide a technical perspective.

수량화 II 류에 의한 임도절토사면의 붕괴요인 평가 (The Evaluation of Failure Factors on Cutting Slopes of Forest Road by Quantification Theory(II))

  • 차두송;지병윤
    • Journal of Forest and Environmental Science
    • /
    • 제18권1호
    • /
    • pp.7-14
    • /
    • 2001
  • 본 연구는 집중호우로 인하여 절토사면의 붕괴가 발생한 임도를 대상으로 수량화이론(II)을 이용하여 붕괴요인을 평가하였다. 그 결과는 다음과 같다. 임도 절토사면의 붕괴발생에 미치는 요인의 영향은 절토사면길이, 겉보기 토질, 사면방위, 절토사변경사, 산지경사 등 5개 요인이 가장 크게 나타났다. 특히, 절토사면길이는 8m 이상, 겉보기 토질은 토사, 사면방위는 북사면, 절토사변경사는 $60^{\circ}$이상, 산지경사는 $35{\sim}40^{\circ}$ 사이에서 사면붕괴에 기여도가 가장 크게 나타났다.

  • PDF