Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.
In this study, a framework for coupling of the convolution quadrature time-domain boundary element method (CQBEM) and image-based finite element method (IMFEM) is presented for 2-D elastic wave propagation. This coupling method has three advantages: 1) the finite element modeling for heterogeneous areas can be performed without difficulties by using digital data for the analysis model, 2) wave propagation in an infinite domain can be calculated with high accuracy by using the CQBEM, and 3) a small time-step size can be used. In general, a small time-step size cannot be used in the classical time-domain boundary element method. However, the CQBEM used in this analysis can address a small time-step size. This makes it possible to couple the CQBEM and image-based FEM which require a small-time step size. In this study, the formulation and validation of the pro-posed method are described and confirmed by solving fundamental elastic wave scattering problems. As a numerical example, elastic wave scattering in inhomogeneous media is demonstrated using the proposed coupling method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.6B
/
pp.1082-1091
/
2000
In this paper, the efficient equalization method for OFDM(Orthogonal Frequency Division Multiflexing) System using the QAM(Quadrature Amplitude Modulation) in multipath fading channel is proposed in order to faster and more efficiently equalize the received signals that are sent over real channel. In generally, the one-tap linear equalizers have been used in the frequency-domain as the existing equalization method for OFDM system. In this technique, if characteristics of the channel are changed fast, the one-tap linear equalizers cannot compensate for the distortion due to time variant multipath channels. Therefore, in this paper, we use one-tap non-linear equalizers instead of using one-tap linear equalizers in the frequency-domain, and also use the linear equalizer in the time-domain to compensate the rapid performance reduction at the low SNR(Signal-to-Noise Ratio) that is the disadvantage of the non-linear equalizer. In the frequency-domain, when QAM signals, consisting of in-phase components and quadrature (out-phase) components, are sent over the complex channel, the only in-phase and quadrature components of signals distorted by the multipath fading are changed the same as signals distorted by the noise. So the cross components are canceled in the frequency-domain equalizer. The time-domain equalizer and the adaptive algorithm that has lower-error probability and fast convergence speed are applied to compensate for the error that is caused by canceling the cross components in the frequency-domain equalizer. In the time-domain, To compensate for the performance of frequency-domain equalizer the time-domain equalizes the distorted signals at a frame by using the Gold-code as a training sequence in the receiver after the Gold-codes are inserted into the guard signal in the transmitter. By using the proposed equalization method, we can achieve faster and more efficient equalization method that has the reduced computational complexity and improved performance.
MPEG4 High Efficiency Advanced Audio Coding (HE-AAC) and MPEG Surround are one of the most efficient combinations for low bit rate multi-channel audio coding. Based on the fact that these two codecs have identical quadrature mirror filter (QMF) analysis and synthesis structures, we propose a dual-domain connection scheme for the codecs. Specifically two time-domain connection methods are analyzed and compared to the QMF subband-domain connection method. Experimental results show that both the time-domain connection methods cause no subjective sound quality degradation compared to the QMF subband-domain connection method, which verifies that one can select either of them depending on application scenarios.
In this paper we consider the hp-version to solve non-constant coefficients elliptic equations on a bounded, convex polygonal domain ${\Omega}$ in $R^2$. A family $G_p=\{I_m\}$ of numerical quadrature rules satisfying certain properties can be used for calculating the integrals. When the numerical quadrature rules $I_m{\in}G_p$ are used for computing the integrals in the stiffness matrix of the variational form we will give its variational form and derive an error estimate of ${\parallel}u-{\widetilde{u}}^h_p{\parallel}_{1,{\Omega}$.
The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.
we consider the hp-version to solve non-constant coefficients elliptic equations $-div(a{\nabla}u)=f$ with Dirichlet boundary conditions on a bounded polygonal domain $\Omega$ in $R^2$. In [6], M. Suri obtained an optimal error-estimate for the hp-version: ${\parallel}u-u^h_p{\parallel}_{1,\Omega}{\leq}Cp^{(\sigma-1)}h^{min(p,\sigma-1)}{\parallel}u{\parallel}_{\sigma,\Omega}$. This optimal result follows under the assumption that all integrations are performed exactly. In practice, the integrals are seldom computed exactly. The numerical quadrature rule scheme is needed to compute the integrals in the variational formulation of the discrete problem. In this paper we consider a family $G_p=\{I_m\}$ of numerical quadrature rules satisfying certain properties, which can be used for calculating the integrals. Under the numerical quadrature rules we will give the variational form of our non-constant coefficients elliptic problem and derive an error estimate of ${\parallel}u-\tilde{u}^h_p{\parallel}_{1,\Omega}$.
The linearized buckling problem is considered for an isotropic clamped-clamped cylindrical shell with an oblique end. A theoretical solution based on the Budiansky shell theory is developed, and numerical results are determined using the differential quadrature method. In formulating the solutions, the surface of the shell is developed onto a plane, and the resulting irregular domain is then mapped, using blending functions, onto a square parent domain. The analysis is carried out in the parent domain. Convergence, validation, and parametric studies are conducted for a uniform external pressure loading. Results determined are compared with finite element results. The paper ends with an appropriate set of conclusions.
We consider the hp-version to solve non-constant coefficient elliptic equations with Dirichlet boundary conditions on a bounded, convex polygonal domain $\Omega$ in $R^{2}.$ To compute the integrals in the variational formulation of the discrete problem we need the numerical quadrature rule scheme. In this paler we consider a family $G_{p}= {I_{m}}$ of numerical quadrature rules satisfying certain properties. When the numerical quadrature rules $I_{m}{\in}G_{p}$ are used for calculating the integrals in the stiffness matrix of the variational form we will give its variational fore and derive an error estimate of ${\parallel}u-\tilde{u}^h_p{\parallel}_0,{\Omega}'$.
As a check on calibration and drift in each discrete sub-system of a commercial frequency-domain airborne electromagnetic system, we aim to use causality constraints alone to predict in-phase from wide-band quadrature data. There are several possible applications of the prediction of in-phase response from quadrature data including: (1) quality control on base level drift, calibration and phase checks; (2) prediction and validation of noise levels in in-phase from quadrature measurements and vice versa and in future; and (3) interpolation and extrapolation of sparsely sampled data enforcing causality and better frequency-domain-time-domain transformations. In practice, using tests on both synthetic and measured Resolve helicopter-borne electromagnetic frequency domain data, in-phase data points could be predicted using a scaled Hilbert transform with a standard deviation between 40 and 80 ppm. However, relative differences between base levels between flight could be resolved to better than 1 ppm, which allows an independent quality control check on the accuracy of drift corrections.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.