• 제목/요약/키워드: quadratic operator

검색결과 27건 처리시간 0.025초

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권3호
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

The General Mornent of Non-central Wishart Distribution

  • Chul Kang;Kim, Byung-Chun
    • Journal of the Korean Statistical Society
    • /
    • 제25권3호
    • /
    • pp.393-406
    • /
    • 1996
  • We obtain the general moment of non-central Wishart distribu-tion, using the J-th moment of a matrix quadratic form and the 2J-th moment of the matrix normal distribution. As an example, the second moment and kurtosis of non-central Wishart distribution are also investigated.

  • PDF

A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditions

  • Lee, Sung J.
    • 호남수학학술지
    • /
    • 제8권1호
    • /
    • pp.21-49
    • /
    • 1986
  • A class of singular quadratic control problem is considered. The state is governed by a higher order system of ordinary linear differential equations and very general nonstandard boundary conditions. These conditions in many important cases reduce to standard boundary conditions and because of the conditions the usual controllability condition is not needed. In the special case where the coefficient matrix of the control variable in the cost functional is a time-independent singular matrix, the corresponding optimal control law as well as the optimal controller are computed. The method of investigation is based on the theory of least-squares solutions of multi-valued operator equations.

  • PDF

${\delta}$ - 연산자를 이용한 강인한 서보 제어기의 설계 (A Design on Robust Servo Controller Using ${\delta}$ - Operator)

  • 황현준;김정택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2602-2604
    • /
    • 2000
  • In this paper, we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that covers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control system. This servo control system is designed by applying a simple genetic algorithm to follow the output of the reference model optimally. The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어 (Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator)

  • 김준식;우희진;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

Non-iterative Global Mesh Smoothing with Feature Preservation

  • Ji, Zhongping;Liu, Ligang;Wang, Guojin
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.89-97
    • /
    • 2006
  • This paper presents a novel approach for non-iterative surface smoothing with feature preservation on arbitrary meshes. Laplacian operator is performed in a global way over the mesh. The surface smoothing is formulated as a quadratic optimization problem, which is easily solved by a sparse linear system. The cost function to be optimized penalizes deviations from the global Laplacian operator while maintaining the overall shape of the original mesh. The features of the original mesh can be preserved by adding feature constraints and barycenter constraints in the system. Our approach is simple and fast, and does not cause surface shrinkage and distortion. Many experimental results are presented to show the applicability and flexibility of the approach.

열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어 (Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills)

  • 황이철;박철재
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

사용 편의성에 기초한 작업 영역의 결정 (Determination of Working Area Based on Operator's Working Comfort)

  • 박성준;정의승
    • 대한산업공학회지
    • /
    • 제26권2호
    • /
    • pp.88-94
    • /
    • 2000
  • For efficient operation, vital hand controls must be easily controlled by the operator from his or her normal working position. The primary working area based on the operator-perceived working comfort was developed to serve as a design guideline to the control panel layout. Six male and four female subjects voluntarily participated in the experiment in which working comfort was measured for two types of controls - knob and lever. The operator-perceived working comfort was examined for the frontal and sagittal distances from the body center and the slope of a work surface. The response surface methodology using a central composite design was employed to develop a prediction model for operator's working comfort on each type of controls. The proposed working areas based on the actual working comfort of an operator avoided the dichotomy that considers only the reachability of control devices, and showed a distinct shape, when compared to the existing normal working areas following the Farley's concept. It was shown that the distance from the body to control devices and the slope of a work surface have a quadratic relationship to the working comfort, and that the most comfortable area for seated tasks is located at the distance of about 2∼4 cm in the sagittal direction and about 42∼43 cm in the frontal direction from the shoulder, respectively. It was also found that the working comfort varies within the working area even at the positions with an equal distance from the body. It is expected that the isocomfort working area generated in the study will be used as a useful guideline for control panel layout.

  • PDF

고차경계요소법에 의한 선체주위 유동해석 (Analysis of Steady and Unsteady Flow Around a Ship Using a Higher-Order Boundary Element Method)

  • 홍사영;최항순
    • 대한조선학회논문집
    • /
    • 제32권1호
    • /
    • pp.42-57
    • /
    • 1995
  • 자유표면의 유동문제는 저항추진성능과 내항성능이 우수한 선박과 파랑중 작업성능이 우수한 해양구조물의 설계와 관련되어 조선해양공학분야에서 지속적으로 관심의 대상이 되어온 연구분야이다. 본 논문에서는 선체주위 유동을 정확하고 효율적으로 해석하기 위한 3차원 수치해법의 개발을 목적으로 하였다. 수치해법으로 경계요소법을 사용하였으며, 그린함수는 간단한 랜킨소오스를 사용하였다. 전 경계요소면은 8점 경계요소로 표시하여 기하학적 특성을 정밀하게 반영하고자 하였다. 자유표면에서 속도포텐셜의 변화를 정규화된 8점 경계요소에서 이중 2차 스플라인함수(bi-quadratic spline function)로 표시함으로써 자유표면에서의 수치감쇠 및 분산오차를 개선하였다. 한편 물체표면에서의 물리량은 8점 경계요소의 특성을 살려 이중 2차 다항식(bi-quadratic function)으로 근사하였다. 이와같이 계산영역에 따라 해의 특성에 부합하는 수치방법을 채택함으로써 수치해의 정확성과 효율성이 향상되도록 하였다. 개발한 수치해법의 효능을 검증하기 위해 계산예로서 정상유동 및 비정상유동의 경우 Neumann-Kelvin문제를 다루었다. 본 방법에 의한 몰수 타원체 및 Series 60선에 대한 조파저항 계산결과는 적은 파넬수를 사용하고도 기존의 계산치는 물론 실험치와 좋은 일치를 보였다. 변형된 Wigley선형에 대한 동유체력 계산결과도 기존의 실험치 및 계산치와 비교적 잘 일치하였다. 비정상 유동의 경우 랜킨소오스법에서 일반적으로 적용하는 상류방사조건은 무차원주파수가 1/4보다 큰 경우에만 유효하므로, 본 논문에서는 파동방정식 연산자를 이용하여 무차원주파수가 1/4보다 작은 경우에 적용할 수 있는 상류방사조건을 유도하였다. 수면하에서 전진하며 동요하는 소오스에 대하여 적용한 결과 본 논문에서 유도한 방사조건이 유효함을 입증하였다.

  • PDF