• Title/Summary/Keyword: quadratic function equation

Search Result 114, Processing Time 0.023 seconds

탄성로봇 위치제어 실험을 위한 제어기법의 비교

  • 강준원;권혁조;오재윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.224-229
    • /
    • 1997
  • This paper compares the control techniques for position control experiments of a fixible robot moving in a vertical plane. The flexible manipulator is modeled as an Euler-beroulli beam. Elastic deformantion is representedusing the assumed model method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. Control schemes are developed using PID control,pole placement control and discrete Linear Quadratic Regulater(LQQ). The effectiveness of the developed control schems are compared using computer simulation in view of practical experiment. The simulation results show that PID control is very effective in practical implementation.

A Method of Determining B-coefficient Applying VDLM/LRDA (전압의존형 부하모델과 손실재분배 알고리즘을 적용한 B계수 산정법)

  • Chae, Myung-Suk;Lee, Myung-Hwan;Kim, Byung-Seop;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1183-1185
    • /
    • 1999
  • The basic purpose of economic dispatch problem is that minimize fuel cost with inequality constraint of generator output. To solve this problem it is very important to express power loss equation that have quadratic function of generator output power included B-coefficient. This Paper presents a method in determining B-coefficient by use A-matrix that is calculated by loss re-distribution algorithm (LRDA) considering voltage dependent load model (VDLM)s. The Proposed algorithm is tested with IEEE 6 bus sample system, which shows the result in each cases by the change of load component factor.

  • PDF

Vibration Contol of Automotive Suspension System using the LQG/LTR Control Methodology (LQG/LTR제어기법을 이용한 자동차 서스펜션 시스템의 진동제어)

  • Ahn, Jeong-Keun;Song, Chang-Hun;Yoo, Sam-Hyeon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.646-653
    • /
    • 2001
  • LQG/LTR Control Methology is recently used for the analysis of multi-variable control in frequency domain. Target filter loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery is accomplished by solving the cheap control and then simulation close to the target filter loop. In this study, LQG/LTR Control Methodology is applied to the seat suspension system. It is found that this technique is very effective to control the system and improve the ride quality of human body.

  • PDF

On an Equal Mean Quadratic Classification Rule With Unknown Prior Probabilities

  • Kim, Hea-Jung;Inada, Koichi
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.126-139
    • /
    • 1995
  • We describe a formal approach to the construction of optimal classification rule for the two-group normal classification with equal population mean problem. Based on the utility function of Bernardo, we suggest a balanced design for the classification and construct the optimal rule under the balanced design condition. The rule is characterized by a constrained minimization of total risk of misclassification, the constraint of which is constructed by the process of equation between expected utilities of the two group conditional densities. The efficacy of the suggested rule is examined through numerical studies. This indicates that, in case little is known about the relative population sizes, dramatic gains in accuracy of classification result can be achieved.

  • PDF

A Computation Method of B-coefficient With Static Voltage Dependent Load Model (정적 전압의존형 부하모델을 적용한 B계수 산정법)

  • Lee, Myung-Hwan;Chae, Myung-Suk;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.218-220
    • /
    • 1997
  • In power system, economic dispatch problem is to minimize fuel cost with inequality constraints of generator output. To solve this problem it is very important to express power loss equation that have Quadratic function of generator power included B-coefficient. This paper presents a method in determining B-coefficient by use A-matrix that is calculated by power flow considering voltage dependent static load model. The proposed algorithm is tested with IEEE 6 bus sample system, which shows the result in each cases by the change of load component factor.

  • PDF

A Controller Design of Bilinear Systems via Iterative Method (반복법에 의한 쌍선형 시스템의 제어기 설계)

  • 이돈구;김주식;이상혁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.88-93
    • /
    • 2003
  • This paper presents a controller design method of bilinear systems via iterative method. The iterative procedure with auxiliary sequences is defined in the process of constructing coupled linear time varying systems from bilinear systems. To design the feedback controller for bilinear systems with quadratic cost function, an optimization procedure is given by the representation closely related to the Riccati approach. In the simulation results, it is shown that the suggested method accomplishes the improved performance and good convergence.

Level set method for the simulation of rising bubble based on triangular and Quadrilateral elements (삼각형 요소와 사각형 요소에 기초한 상승기포의 모사를 위한 Level set 방법)

  • Cho, M.H.;Choi, H.G.;Jeon, B.J.;Yoo, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.10-13
    • /
    • 2011
  • A level set method is proposed to simulate the incompressible two-phase flow considering the effect of surface tension. For reinitialization of level set junction, a direct approach method is employed, instead of solving hyperbolic type equation. A mixed element is adopted, so that the continuity mid Navier-Stokes equations are solved by using the quadratic elements (six-node triangular element mid nine-node quadrilateral element), mid the level set function is solved by using the linear elements (three-node triangular element mid four-node quadrilateral element). In order to verify the accuracy mid robustness of the codes, the present methods are applied to a few benchmark problems. It is confirmed that the present results are in good qualitative mid quantitative agreements with the existing studies.

  • PDF

Constrained Dynamic Responses of Structures Subjected to Earthquake

  • Eun, Hee Chang;Lee, Min Su
    • Architectural research
    • /
    • v.8 no.2
    • /
    • pp.37-42
    • /
    • 2006
  • Starting from the quadratic optimal control algorithm, this study obtains the relation of the performance index for constrained systems and Gauss's principle. And minimizing a function of the variation in kinetic energy at constrained and unconstrained states with respect to the velocity variation, the dynamic equation is derived and it is shown that the result compares with the generalized inverse method proposed by Udwadia and Kalaba. It is investigated that the responses of a 10-story building are constrained by the installation of a two-bar structure as an application to utilize the derived equations. The structural responses are affected by various factors like the length of each bar, damping, stiffness of the bar structure, and the junction positions of two structures. Under an assumption that the bars have the same mass density, this study determines the junction positions to minimize the total dynamic responses of the structure.

Design of an Active Damping Layer Using Topology Optimization (위상 최적화를 이용한 능동 감쇠층의 설계)

  • 김태우;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.660-664
    • /
    • 2003
  • The optimal thickness distribution of an active damping layer is sought so that it satisfies a certain constraint on the dynamic performance of a system minimizing control efforts. To obtain a topologically optimized configuration, which includes size and shape optimization, thickness of the active damping layer is interpolated using linear functions. With the control energy as the objective function to be minimized, the state error energy is introduced as the dynamic performance criterion for the system and used lot a constraint. The optimal control gains are evaluated from LQR simultaneously as the optimization of the layer position proceeds. From numerical simulation, the topologically optimized distribution of the active damping layer shows the same dynamic performance and cost as the Idly covered counterpart, which is optimized only in terms of control gains, with less amount of the layer.

  • PDF

Rigid-Plastic Finite Element Analysis of Anisotropic Sheet Metal Forming Processes by using Continuum Elements (연속체요소를 이용한 이방성 박판재료 성형공정의 강소성 유한요소해석)

  • 이동우;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.24-27
    • /
    • 1997
  • In the present work, rigid-plastic continuum elements employing the shape change and anisotropic effects are derived for the purpose of applying more realistic blankholding force condition in three-dimensional finite element analysis of sheet metal forming process. In order to incorporate the effect of shape change effectively in the derivation of finite element equation using continuum element for sheet metal forming, the convected coordinate system is introduced, rendering the analysis more rigorous and accurate. The formulation is extended to cover the orthotropic material using Hill's quadratic yield function. For the purpose of applying more realistic blankholding force condition, distributed normal and associated frictional tangent forces are employed in the blankholder, which is pressed normal and associated frictional tangent forces are employed in the blankholder, which is pressed against the flange until the resultant contact force with the blank reaches the prescribed value. As an example of sheet metal forming process coupling the effect of planar anisotropy and that of blankholding boundary condition, circular cup deep drawing has been analyzed considering both effects together.

  • PDF