• Title/Summary/Keyword: quadratic derivation

Search Result 21, Processing Time 0.025 seconds

Reliability of an elastic bar under tension in a corrosive environment

  • Elishakoff, Isaac;Soret, Clement
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.173-187
    • /
    • 2012
  • In this study we investigate the reliability of a bar subjected to a random tensile load in presence of corrosion. We consider linear, quadratic and exponential models that connect the stress in the bar with the corrosion rate. Two probability densities are considered for the load, with attendant derivation of the time-dependant reliability. The design time of operation is determined utilizing the requirement that the reliability must not be less than the required value.

Economic Generation Allocation with Power Equation Constraints (모선 전력방정식을 제약조건으로 하는 경제적 발전력 연산방법)

  • Eom, Jae-Seon;Kim, Geon-Jung;Lee, Sang-Jung;Choe, Jang-Heum
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.398-402
    • /
    • 2002
  • The ELD computation has been based upon the so-called B-coefficient which uses a quadratic approximation of system loss as a function of generation output. Direct derivation of system loss sensitivity based on the Jacobian-based method was developed in early 1970s', which could eliminate the dependence upon the approximate loss formula. However, both the B-coefficient and the Jacobian-based method require a complicated Procedure for calculating the system loss sensitivity included in the constraints of the optimization problem. In this paper, an ELD formulation in which only the bus power equations are defined as the constraints has been introduced. Derivation of the partial derivatives of the system loss with respect to the generator output and calculation of the penalty factors for individual generators are not required anymore in proposed method. A comprehensive solution procedure including calculation of the Jacobians and Hessians of the formulation has been presented in detail. Proposed ELD formulation has been tested on a sample system and the simulation indicated a satisfactory result.

Reflection of a gaussian beam from a planar dielectric interface

  • Lee, Yeon H.
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.200-206
    • /
    • 1996
  • When a Gaussian beam is incident to a planar dielectric interface at an angle other than Brewster angle or the critical angle of total reflection, we derive the six nonspecular effects of rotation, lateral shift, focal shift, Rayleigh length change, magnitude and phase changes in the complex amplitude of the reflected beam simultaneously by taking account of the boundary condition. In the derivation we assume a Gaussian beam of fundamental mode to emerge from the interface and then match at the interface the constant, linear, and quadratic variations of the amplitude and phase of the reflected beam with those of the incident beam multiplied by the reflection coefficient. Our calculation shows that the six nonspecular effects can result from a linear variation of the natural logarithm of the reflection coefficient at the interface.

  • PDF

Decentralized energy market-based structural control

  • Lynch, Jerome Peter;Law, Kincho H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.557-572
    • /
    • 2004
  • Control systems are used to limit structural lateral deflections during large external loads such as winds and earthquakes. Most recently, the semi-active control approach has grown in popularity due to inexpensive control devices that consume little power. As a result, recently designed control systems have employed many semi-active control devices for the control of a structure. In the future, it is envisioned that structural control systems will be large-scale systems defined by high actuation and sensor densities. Decentralized control approaches have been used to control large-scale systems that are too complex for a traditional centralized approach, such as linear quadratic regulation (LQR). This paper describes the derivation of energy market-based control (EMBC), a decentralized approach that models the structural control system as a competitive marketplace. The interaction of free-market buyers and sellers result in an optimal allocation of limited control system resources such as control energy. The Kajima-Shizuoka Building and a 20-story benchmark structure are selected as illustrative examples to be used for comparison of the EMBC and centralized LQR approaches.

Rigid-Plastic Finite Element Analysis of Anisotropic Sheet Metal Forming Processes by using Continuum Elements (연속체요소를 이용한 이방성 박판재료 성형공정의 강소성 유한요소해석)

  • 이동우;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.24-27
    • /
    • 1997
  • In the present work, rigid-plastic continuum elements employing the shape change and anisotropic effects are derived for the purpose of applying more realistic blankholding force condition in three-dimensional finite element analysis of sheet metal forming process. In order to incorporate the effect of shape change effectively in the derivation of finite element equation using continuum element for sheet metal forming, the convected coordinate system is introduced, rendering the analysis more rigorous and accurate. The formulation is extended to cover the orthotropic material using Hill's quadratic yield function. For the purpose of applying more realistic blankholding force condition, distributed normal and associated frictional tangent forces are employed in the blankholder, which is pressed normal and associated frictional tangent forces are employed in the blankholder, which is pressed against the flange until the resultant contact force with the blank reaches the prescribed value. As an example of sheet metal forming process coupling the effect of planar anisotropy and that of blankholding boundary condition, circular cup deep drawing has been analyzed considering both effects together.

  • PDF

Transfer Function Derivation and LQG/LTR Speed Ratio Control for a Metal Belt CVT (금속벨트 CVT의 전달함수 도출과 변속비 LQG/LTR 제어)

  • 김종준;송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • In this paper, a transfer function was obtained for a PWM high speed solenoid valve controlled metal belt CVT system. The transfer function was defined as the ratio of speed ratio to PWM duty ratio and derived in time domain by linear regression analysis from the experimental results. The transfer function obtained showed different dynamic characteristics for the up and down shift. Also, LQG/LTR controller was designed for the CVT system using the transfer function. It is seen from the experimental results that LQG/LTR control showed good performance for the speed ratio tracking and disturbance rejection. The phase difference and relatively slow response are considered due to the inaccuracy os the transfer functions, which resulted from the inherent nonlinearities of the transmission characteristics of the metal belt CVT.

  • PDF

OPTIMAL IMPACT ANGLE CONTROL GUIDANCE LAWS AGAINST A MANEUVERING TARGET

  • RYOO, CHANG-KYUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.235-252
    • /
    • 2015
  • Optimal impact angle control guidance law and its variants for intercepting a maneuvering target are introduced in this paper. The linear quadratic(LQ) optimal control theory is reviewed first to setup framework of guidance law derivation, called the sweep method. As an example, the inversely weighted time-to-go energy optimal control problem to obtain the optimal impact angle control guidance law for a fixed target is solved via the sweep method. Since this optimal guidance law is not applicable for a moving target due to the angle mismatch at the impact instant, the law is modified to three different biased proportional navigation(PN) laws: the flight path angle control law, the line-of-sight(LOS) angle control law, and the relative flight path angle control law. Effectiveness of the guidance laws are verified via numerical simulations.

Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation

  • Arefi, Mohammad;Allam, M.N.M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.81-100
    • /
    • 2015
  • This paper presents nonlinear analysis of an arbitrary functionally graded circular plate integrated with two functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. Geometric nonlinearity is considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential is assumed as a quadratic function along the thickness direction. After derivation of general nonlinear equations, as an instance, numerical results of a functionally graded material integrated with functionally graded piezoelectric material obeying two different functionalities is investigated. The effect of different parameters such as parameters of foundation, non homogenous index and boundary conditions can be investigated on the mechanical and electrical results of the system. A comprehensive comparison between linear and nonlinear responses of the system presents necessity of this study. Furthermore, the obtained results can be validated by using previous linear and nonlinear analyses after removing the effect of foundation.

Approximate Shear Strength Formula Implied in the Generalized Hoek-Brown Failure Criterion (일반화된 Hoek-Brown 파괴조건식에 내포된 전단강도 근사식)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.426-441
    • /
    • 2018
  • Recently, the generalized Hoek-Brown (GHB) failure criterion has been actively employed in various rock engineering calculations, but the analytical form of the corresponding Mohr failure envelope is not available, making it difficult to extend the application of the GHB criterion. In order to overcome this disadvantage, this study proposes a new method to express the tangential friction angle as an explicit function of normal stress by invoking the polynomial best-fitting to the relationship between normal stress and tangent friction angle implied in the GHB failure function. If this normal stress - tangential friction angle relationship is best-fitted with linear or quadratic polynomial function, it is possible to find the analytical root for tangential friction angle. Subsequently, incorporating the root into the relationship between shear stress and tangential friction angle accomplishes the derivation of the approximate Mohr envelope for the GHB criterion. It is demonstrated that the derived approximate Mohr failure envelopes are very accurate in the entire range of GSI value.

Derivation of affective factors for automotive interior material and its association analysis on material properties (자동차 내장 재질의 감성 품질요인 도출 및 물리적 특성치와의 연관성 분석)

  • Park, Sungjoon;Park, Jaekyu;Choe, Jaeho
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2017
  • Purpose: The purpose of this study is to structure affective factors related to the tactile sense in order to improve tactile sensibility satisfaction of interior material. In this paper, we propose the design direction of interior material by analyzing the association between material properties and affective factors for automotive interior material. Methods: The relationship between sensibility adjectives and feelings related to tactile sensation were derived through factor analysis after touching prepared samples that were made by changing the material properties of automotive interior material. The association between affective factors and interior material properties were analyzed through ANOVA. Results: Seven kinds of visual and tactile affective factors were derived from the correlation between feeling of material and sensibility adjectives measured by 215 subjects. It is found that there is a quadratic relationship rather than a linear relationship through association analysis between affective factors and the material properties such as roughness, friction coefficient, and hardness. Conclusion: This study suggests the direction of the interior material design which can improve the sensibility satisfaction of the automobile customers by identifying the tactile factors related to the material properties of automotive interior material.